Advertisement

Optic Flow Based Autopilots: Speed Control and Obstacle Avoidance

  • Nicolas FranceschiniEmail author
  • Franck Ruffier
  • Julien Serres
Chapter

Abstract

The explicit control schemes presented here explain how insects may navigate on the sole basis of optic flow (OF) cues without requiring any distance or speed measurements: how they take off and land, follow the terrain, avoid the lateral walls in a corridor, and control their forward speed automatically. The optic flow regulator, a feedback system controlling either the lift, the forward thrust, or the lateral thrust, is described. Three OF regulators account for various insect flight patterns observed over the ground and over still water, under calm and windy conditions, and in straight and tapered corridors. These control schemes were simulated experimentally and/or implemented onboard two types of aerial robots, a micro-helicopter (MH) and a hovercraft (HO), which behaved much like insects when placed in similar environments. These robots were equipped with opto-electronic OF sensors inspired by our electrophysiological findings on houseflies’ motion-sensitive visual neurons. The simple, parsimonious control schemes described here require no conventional avionic devices such as rangefinders, groundspeed sensors, or GPS receivers. They are consistent with the neural repertory of flying insects and meet the low avionic payload requirements of autonomous micro-aerial and space vehicles.

Keywords

Optic Flow Dung Beetle Forward Speed Flight Pattern Aerial Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to S. Viollet, F. Aubépart L. Kerhuel, and G. Portelli for their fruitful comments and suggestions during this research. G. Masson participated in the experiments on bees and D. Dray in the experimental simulations on LORA III. We are also thankful to Marc Boyron (electronics engineer), Yannick Luparini, and Fabien Paganucci (mechanical engineers) for their expert technical assistance and J. Blanc for revising the English manuscript. Serge Dini (beekeeper) gave plenty of useful advice during the behavioral experiments. This research was supported by CNRS (Life Science; Information and Engineering Science and Technology), an EU contract (IST/FET – 1999-29043), and a DGA contract (2005 – 0451037).

References

  1. 1.
    Aubépart, F., Franceschini., N.: Bio-inspired optic flow sensors based on FPGA: Application to micro-air vehicles. Journal of Microprocessors and Microsystems 31, 408–419 (2007)CrossRefGoogle Scholar
  2. 2.
    Aubépart, F., El Farji, M., Franceschini, N.: FPGA implementation of elementary motion detectors for the visual guidance of micro-air vehicles. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’2004), pp. 71–76. Ajaccio, France (2004)Google Scholar
  3. 3.
    Baird, E., Srinivasan, M.V., Zhang, S.W., Cowling., A.: Visual control of flight speed in honeybees. Journal of Experimental Biology 208, 3895–3905 (2005).CrossRefGoogle Scholar
  4. 4.
    Baird, E., Srinivasan, M.V., Zhang, S.W., Lamont R., Cowling. A.: Visual control of flight speed and height in the honeybee. In: S. Nolfi et al. (eds.) From Animals to Animats 9, (SAB 2006), LNAI 4095, 40–51 (2006)Google Scholar
  5. 5.
    Barber, D.B.; Griffiths, S..R.; McLain, T.W.;& Beard, R.W.: Autonomous landing of miniature aerial vehicles. Proceedings American Institute of Aeronautics and Astronautics Conference. (2005)Google Scholar
  6. 6.
    Barrows, GL, Neely, C., Miller, K.T.: Optic flow sensors for MAV navigation. Fixed and flapping wing aerodynamics for micro-air vehicle applications. Progress in Astronautics and Aeronautics 195, 557–574 (2001)Google Scholar
  7. 7.
    Blanès, C.: Appareil visuel élémentaire pour la navigation à vue d’un robot mobile autonome. M.S. thesis in Neuroscience, Université d’Aix-Marseille II, Marseille (1986)Google Scholar
  8. 8.
    Blanès, C.: Guidage visuel d’un robot mobile autonome d’inspitation bionique. PhD thesis, Polytechnical Institute, Grenoble. Thesis work at the Neurocybernetics lab, CNRS, Marseille, France (1991)Google Scholar
  9. 9.
    Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A188, 419–437 (2002)Google Scholar
  10. 10.
    Buchner, E., Götz, K.G.: Evidence for one-way movement detection in the visual system of Drosophila. Biological Cybernetics 31, 243–248 (1978)CrossRefGoogle Scholar
  11. 11.
    Collett, T., Nalbach, H.O., Wagner, H.: Visual stabilization in Arthropods; In: F.A. Miles, J. Wallman (eds.) Visual motion and its role in the stabilization of gaze, pp. 239–263. Elsevier (1993)Google Scholar
  12. 12.
    Coombs, D., Roberts, K.: Centering behavior using peripheral vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA (1993)Google Scholar
  13. 13.
    David, C.: The relationship between body angle and flight speed in free-flying Drosophila. Physiological Entomology 3, 191–195 (1978)CrossRefGoogle Scholar
  14. 14.
    David, C.: Height control by free-flying Drosophila. Physiological Entomology 4, 209–216 (1979)CrossRefGoogle Scholar
  15. 15.
    David, C.: Compensation for height in the control of groundspeed by Drosophila in a new, ‘barber’s pole’ wind tunnel. Journal of Comparative Physiology 147, 485–493 (1982).CrossRefGoogle Scholar
  16. 16.
    David, C.: Visual control of the partition of flight force between lift and thrust in free-flying Drosophila. Nature 313, 48–50 (1985)CrossRefGoogle Scholar
  17. 17.
    Dickson, W., Straw, A., Poelma, C., Dickinson, M.: An integrative model of insect flight control.  Proceedings of the 44th American Institute of Aeronautics, Astronautics and Aerospace Meeting, Reno, USA (2006)Google Scholar
  18. 18.
    Duchon, A.P., Warren, W.H.: Robot navigation from a Gibsonian viewpoint. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Antonio, USA. 2272–2277 (1994)Google Scholar
  19. 19.
    Egelhaaf, M., Borst, A.: Movement detection in Arthropods. In: F.A. Miles, J. Wallman (eds.) Visual motion an its role in the stabilization of gaze. Amsterdam: Elsevier, 53–77 (1993)Google Scholar
  20. 20.
    Epstein, M., Waydo, S., Fuller, S.B., Dickson, W., Straw, A., Dickinson, M.H., Murray R.M.: Biologically inspired feedback design for Drosophila flight. Proceedings of the American Control Conference (ACC), NY, USA, pp. 3395–3401 (2007).Google Scholar
  21. 21.
    Esch, H., Natchigall, W., Kogge, S.N.: Correlations between aerodynamic output, electrical activity in the indirect flight muscles and flight positions of bees flying in a servomechanically controlled flight tunnel. Journal of Comparative Physiology A 100, 147–159 (1975)CrossRefGoogle Scholar
  22. 22.
    Franceschini, N.: Early processing of colour and motion in a mosaic visual system. Neuroscience Research 2, 517–549 (1985)Google Scholar
  23. 23.
    Franceschini, N.: Sequence-discriminating neural network in the eye of the fly. In: F.H.K. Eeckman (ed.) Analysis and Modeling of Neural Systems, pp.142–150. Norwell, USA, Kluwer Acad. Pub. (1992)Google Scholar
  24. 24.
    Franceschini, N.: Towards automatic visual guidance of aerospace vehicles: from insects to robots. Proceedings of the ACT Workshop on Innovative Concepts « A Bridge to Space » ESA-ESTEC, Noordwijk, The Netherlands, Acta Futura 4: 8–23 (2008)Google Scholar
  25. 25.
    Franceschini, N., Blanes, C. and L. Oufar, L.: Appareil de mesure, passif et sans contact, de la vitesse d’un objet quelconque. Technical Report ANVAR/DVAR, N°51549, Paris, France (1986)Google Scholar
  26. 26.
    Franceschini, N., Pichon, J.M., Blanès, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society of London. Series B 337, 283–294 (1992)CrossRefGoogle Scholar
  27. 27.
    Franceschini, N., Riehle, A., Le Nestour A.: Directionally selective motion detection by insect neurons. In: D.G. Stavenga, R.C. Hardie (eds.) Facets of Vision, Chapt. 17, pp. 360–390. Berlin, Springer (1989)Google Scholar
  28. 28.
    Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology 17, 329–335 (2007)CrossRefGoogle Scholar
  29. 29.
    Franceschini, N., Ruffier, F., Viollet, S., Boyron, M.: Steering aid system for altitude and horizontal speed, perpendicular to the vertical, of an aircraft and aircraft equipped therewith. International Patent PCT FR2003/002611 (2003)Google Scholar
  30. 30.
    von Frisch, K.: Tanzsprache und Orientierung der Bienen, Berlin, Springer (1965)Google Scholar
  31. 31.
    Garratt M.A., Chahl, J.S.: Vision-based terrain following for an unmanned rotorcraft. Journal of Field Robotics 25, 284–301 (2008)CrossRefGoogle Scholar
  32. 32.
    Gibson, J.J.: The perception of the visual world. Boston, Houghton Mifflin (1950)Google Scholar
  33. 33.
    Gibson, J.J., Olum, P., Rosenblatt, F.: Parallax and perspective during aircraft landings. The American Journal of Psychology 68, 372–395 (1955)CrossRefGoogle Scholar
  34. 34.
    Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)CrossRefGoogle Scholar
  35. 35.
    Green, WF, Oh, Y., Barrows, G.: Flying insect inspired vision for autonomous axial robot maneuvers in near earth environments. Proceedings of the IEEE International Conference on Robotics and Automation vol. 3, pp 2347–2352 (2004)Google Scholar
  36. 36.
    Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., Beard, R.: Maximizing miniature aerial vehicles – obstacle and terrain avoidance for MAVs. IEEE Robotics and Automation Magazine 13, 34–43 (2006)CrossRefGoogle Scholar
  37. 37.
    Hausen K., Egelhaaf, M.: Neural mechanisms of visual course control in insects. In: D.G. Stavenga, R.C. Hardie (eds.) Facets of Vision, chapt. 18, pp. 391–424. Berlin: Springer (1989)Google Scholar
  38. 38.
    Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeitreihenfolgen und Vorzeichen-Auswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 11b, 513–524 (1956)Google Scholar
  39. 39.
    Heisenberg, M., Wolf, R.: Vision in Drosophila. Genetics of microbehavior. Berlin: Springer (1984)Google Scholar
  40. 40.
    Hengstenberg R.: Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. Journal of Comparative Physiology A 163, 151–165 (1988)CrossRefGoogle Scholar
  41. 41.
    Hengstenberg R.: Control of head pitch in Drosophila during rest and flight. Göttingen Neurobiology Meeting 305 (1992)Google Scholar
  42. 42.
    Heran, P., Lindauer, M.: Windkompensation und Seitenwindkorrektur der Bienen beim Flug über Wasser. Zeitschrift für Vergleichende Physiologie 47, 39–55 (1963)CrossRefGoogle Scholar
  43. 43.
    Humbert, J.S., Hyslop, H., Chinn, M.: Experimental validation of wide-field integration methods for autonomous navigation. Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (IROS). San Diego, USA, 2144–2149 (2007)Google Scholar
  44. 44.
    Humbert, J.S., Murray, R.M., Dickinson, M.H.: Sensorimotor convergence in visual navigation and flight control systems. In: Proceedings of 16th IFAC World Congress. Prague, Czech Republic (2005)Google Scholar
  45. 45.
    Ibbotson, M.R.: Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee. Proceedings of the Royal Society of London, Series B 268, 2195–2201 (2001)Google Scholar
  46. 46.
    Iida, F.: Goal-directed navigation of an autonomous flying robot using biologically inspired cheap vision. Proceedings of the 32nd International Symposium on Robotics (2001)Google Scholar
  47. 47.
    Kramer, J., Sarpeshkar, R., Koch, C.: Pulse-based analog VLSI velocity sensors. IEEE Trans. Circuits and Systems II : Analog and digital signal processing 44, 86–101 (1997)Google Scholar
  48. 48.
    Kellog, F.E., Fritzel, D.E., Wright, R.H.: The olfactory guidance of flying insects IV. Drosophila. Canadian Entomology, 884–888 (1962)Google Scholar
  49. 49.
    Kennedy, J.S.: Visual responses of flying mosquitoes. Proceedings of the Zoological Society of London 109, 221–242 (1939)Google Scholar
  50. 50.
    Kennedy, J.S.: The migration of the desert locust (Schistocerca gregaria Forsk.) I. The behaviour of swarms. Philosophical Transactions of the Royal Society London, B 235, 163–290 (1951)CrossRefGoogle Scholar
  51. 51.
    Kennedy, J.S., Marsh D.: Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974)CrossRefGoogle Scholar
  52. 52.
    Kerhuel, L., Viollet, S., Franceschini, N.: A sighted aerial robot with fast gaze and heading stabilization. Proceedings of the IEEE International Conference on Intelligent Robots Systems, San Diego, pp. 2634–2641 (2007)Google Scholar
  53. 53.
    Kirchner, W.H. ; Srinivasan, M.V.: Freely moving honeybees use image motion to estimate distance. Naturwissenchaften 76, 281–282 (1989)CrossRefGoogle Scholar
  54. 54.
    Koenderink, J.J.: Optic flow. Vision Research 26, 161–179 (1986)CrossRefGoogle Scholar
  55. 55.
    Mura, F., Franceschini., N.: Visual control of altitude and speed in a flying agent. In: D. Cliff et al. (eds.) From Animals to Animats III, pp. 91–99. Cambridge: MIT Press (1994)Google Scholar
  56. 56.
    Nelson, RC, Aloimonos, Y. Obstacle avoidance using flow field divergence. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 1102–1106 (1989)CrossRefGoogle Scholar
  57. 57.
    Netter, T., Franceschini, N.: Neuromorphic optical flow sensing for Nap-of-the-Earth flight. In: D.W. Gage, H.M. Choset (eds.) Mobile Robots XIV, SPIE, Vol. 3838, Bellinghan, USA 208–216 (1999)Google Scholar
  58. 58.
    Netter, T., Franceschini, N.: A robotic aircraft that follows terrain using a neuromorphic eye. Proceedings of the IEEE International Conference on Intelligent Robots & Systems (IROS) Lausanne, Switzerland, 129–134 (2002)Google Scholar
  59. 59.
    Neumann T.R., Bülthoff, H.: Insect inspired visual control of translatory flight. Proceedings ECAL 2001, pp. 627–636. Berlin: Springer (2001)Google Scholar
  60. 60.
    Pichon, J-M., Blanès, C., Franceschini, N.: Visual guidance of a mobile robot equipped with a network of self-motion sensors. In: W.J. Wolfe, W.H. Chun (eds.) Mobile Robots IV, Bellingham, U.S.A.: SPIE Vol. 1195, 44–53 (1989)Google Scholar
  61. 61.
    Portelli, G., Serres, J., Ruffier F., Franceschini, N.: An Insect-Inspired Visual Autopilot for Corridor-Following. Proceedings of the IEEE International Conference on Biomedical Robotics & Biomechatronics, BioRob 08, Scottsdale, USA, pp. 19–26 (2008)Google Scholar
  62. 62.
    Preiss, R.: Set-point of retinal velocity of ground images in the control of swarming flight of desert locusts. Journal Comparative Physiology A 171, 251–256 (1992)Google Scholar
  63. 63.
    Preiss, R., Kramer, E.: Control of flight speed by minimization of the apparent ground pattern movement. In: D. Varju, H. Schnitzler (eds.) Localization and orientation in Biology and Engineering, pp. 140–142 Berlin, Springer (1984)Google Scholar
  64. 64.
    Pudas, M, Viollet, S, Ruffier, F, Kruusing, A, Amic, S, Leppävuori, S, Franceschini, N.: A miniature bio-inspired optic flow sensor based on low temperature co-fired ceramics (LTCC) technology, Sensors and Actuators A133, 88–95 (2007)Google Scholar
  65. 65.
    Reichardt, W.: Movement perception in insects. In: W. Reichardt (ed.) Processing of Optical Data by Organisms and by Machines. New York, Academic Press (1969)Google Scholar
  66. 66.
    Reiser, M, Humbert, S., Dunlop, M., Vecchio, D., Murray, M., Dickinson, M.: Vision as a compensatory mechanism for disturbance rejection in upwind flight. American Control Conference 04. Proceedings IEEE Computer Society pp. 311–316 (2004)Google Scholar
  67. 67.
    Riehle, A, Franceschini, N.: Motion detection in flies: parametric control over ON-OFF pathways. Experimental Brain Research 54, 390–394 (1984)CrossRefGoogle Scholar
  68. 68.
    Riley, J.R., Osborne, JL.: Flight trajectories of foraging insects: observations using harmonic radar. In: D.R. Reynolds, C.D. Thomas (eds.) Insect Movement: Mechanisms and Consequences, Chap. 7, pp. 129–157. CAB International (2001)Google Scholar
  69. 69.
    Rossel, S., Wehner, R.: How bees analyze the polarization pattern in the sky. Experiments and model. Journal of Comparative Physiology A154, 607–615 (1984) Google Scholar
  70. 70.
    Ruffier, F., Franceschini, N.: OCTAVE, a bioinspired visuo-motor control system for the guidance of Micro-Air Vehicles, In: A. Rodriguez-Vazquez, D. Abbott, R. Carmona, (eds.) Bioengineered and Bioinspired Systems, Vol. 5119, pp. 1–12. Bellingham, U.S.A.: SPIE (2003)Google Scholar
  71. 71.
    Ruffier, F., Franceschini, N.: Visually guided micro-aerial vehicle: automatic take-off, terrain following, landing and wind reaction. Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), New Orleans, USA, pp. 2339–2346 (2004)Google Scholar
  72. 72.
    Ruffier, F., Franceschini, N.: Automatic landing and takeoff at constant slope without terrestrial aids. Proceedings of the 31st Eur. Rotorcraft Forum, AAF/CEAS, Florence, pp. 92.1–92.8. (2005)Google Scholar
  73. 73.
    Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems 50, 177–194 (2005)CrossRefGoogle Scholar
  74. 74.
    Ruffier, F., Franceschini, N.: Aerial robot piloted in steep relief by optic flow sensors. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Nice, pp.1266–1273 (2008)Google Scholar
  75. 75.
    Ruffier, F., Viollet, S., Amic, S., Franceschini, N.: Bio-inspired optical flow circuits for the visual guidance of micro-air vehicles. Proceedings IEEE, ISCAS, III, pp. 846–849. Bangkok, Thaïland (2003)Google Scholar
  76. 76.
    Santos-Victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergent stereo in autonomous navigation: from bees to robots. International Journal of Computer Vision 14, 159–177 (1995)CrossRefGoogle Scholar
  77. 77.
    Sarpeshkar, R.; Kramer, J.; Koch, C.: Pulse domain Neuromorphic Circuit for Computing Motion, US patent Nb 5,781,648 (1998)Google Scholar
  78. 78.
    Schilstra, C., van Hateren J.H.: Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. Journal of Experimental Biology. 202, 1481–1490 (1999)Google Scholar
  79. 79.
    Serres, J., Dray, D., Ruffier, F., Franceschini, N.: A vision-based autopilot for a miniature airvehicle: joint speed control and lateral obstacle avoidance. Autonomous Robots 25, 103–122 (2008)CrossRefGoogle Scholar
  80. 80.
    Serres, J., Masson, G., Ruffier, F., Franceschini, N.: A bee in the corridor : centering and wall following. Naturwissenschaften 95, 1181–1187 (2008)CrossRefGoogle Scholar
  81. 81.
    Spork, P., Preiss, R.: Control of flight by means of lateral visual stimuli in gregarious desert locusts, Schistocerca gregaria. Physiological Entomology 18, 195–203 (1993)CrossRefGoogle Scholar
  82. 82.
    Srinivasan, M.V.: How insects infer range from visual motion. In: F.A. Miles, J. Wallman (eds.) Visual motion and its role in the stabilization of gaze. Amsterdam, Elsevier (1993)Google Scholar
  83. 83.
    Srinivasan, M.V., Lehrer, M., Kirchner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honeybees. Visual Neuroscience 6, 519–535 (1991)CrossRefGoogle Scholar
  84. 84.
    Srinivasan, M.V., Zhang, S.W., Lehrer, M., Collett., T.: Honeybee navigation en route to the goal: visual flight control and odometry. Journal of Experimental Physiology 199, 237–244 (1996)Google Scholar
  85. 85.
    Srinivasan, M.V., Chahl, J.S., Weber, K., Venkatesh, S., Nagle, M.G., Zhang, S.W.: Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems 26, 203–216 (1999)CrossRefGoogle Scholar
  86. 86.
    Srinivasan, M.V., Zhang, S.W., Chahl, J.S., Barth, E., Venkatesh, S.: How honeybees make grazing landings on flat surface. Biological Cybernetics 83, 171–183 (2000)CrossRefGoogle Scholar
  87. 87.
    Strausfeld, N.: Beneath the compound eye: Neuroanatomical analysis and physiological correlates in the study of insect vision. In: D.G. Stavenga, R.C. Hardie (eds.) Facets of Vision., Berlin, Springer, chapt. 16, pp. 316–359 (1989)Google Scholar
  88. 88.
    Tammero, L.F., Dickinson, M.H.: Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. Journal of Experimental Biology 205, 2785–2798 (2002)Google Scholar
  89. 89.
    Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior on the fruit fly Drosophila melanogaster. Journal of Experimental Biology 205, 327–343 (2002)Google Scholar
  90. 90.
    Taylor G.K., Krapp, H.G.: Sensory systems and flight stability: what do insects measure and why? In: J. Casas, S.J. Simpson (eds.) Advances in Insect Physiol. 34: Insects mechanisms and control, pp. 231–316 Amsterdam, Elsevier (2008)Google Scholar
  91. 91.
    Ullman, S.: Analysis of visual motion by biological and computer systems, Computer 14, 57–69 (1981)CrossRefGoogle Scholar
  92. 92.
    van Hateren, H., Schilstra, C.: Blowfly flight and optic flow, II. Head movement during flight. Journal of Experimental Biology 202: 1491–1500 (1999)Google Scholar
  93. 93.
    Wagner, H.: Flow-field variables trigger landing in flies. Nature 297, 147–148 (1982)CrossRefGoogle Scholar
  94. 94.
    Wagner, H.: Flight performance and visual control of flight of the free-flying housefly Musca domestica, I. Organisation of the flight motor. Philosophical Transactions of the Royal Society of London, Series B312, 527–551 (1986)CrossRefGoogle Scholar
  95. 95.
    Whiteside, T.C., G.D. Samuel.: Blur zone. Nature 225, 94–95, (1970)CrossRefGoogle Scholar
  96. 96.
    Zeil, J., Boeddeker, N., Hemmi, J.M.: Vision and the organization of behavior, Current Biology 18, 320–323 (2008)CrossRefGoogle Scholar
  97. 97.
    Zettler, F., Weiler, R.: Neuronal processing in the first optic neuropile of the compound eye of the fly. In: F. Zettler, R. Weiler (eds.) Neural principles in vision, pp. 226–237. Berlin, Springer (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicolas Franceschini
    • 1
    Email author
  • Franck Ruffier
    • 1
  • Julien Serres
    • 1
  1. 1.Biorobotics LabInstitute of Movement Science, CNRS & Univ. of the MediterraneanMarseilleFrance

Personalised recommendations