Skip to main content

Revisiting Multiple-Instance Learning Via Embedded Instance Selection

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5360))

Abstract

Multiple-Instance Learning via Embedded Instance Selection (MILES) is a recently proposed multiple-instance (MI) classification algorithm that applies a single-instance base learner to a propositionalized version of MI data. However, the original authors consider only one single-instance base learner for the algorithm — the 1-norm SVM. We present an empirical study investigating the efficacy of alternative base learners for MILES, and compare MILES to other MI algorithms. Our results show that boosted decision stumps can in some cases provide better classification accuracy than the 1-norm SVM as a base learner for MILES. Although MILES provides competitive performance when compared to other MI learners, we identify simpler propositionalization methods that require shorter training times while retaining MILES’ strong classification performance on the datasets we tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: NIPS, pp. 577–584 (2002)

    Google Scholar 

  2. Auer, P., Ortner, R.: A boosting approach to multiple instance learning. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 63–74. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Braddock, P.S., Hu, D.E., Fan, T.P., Stratford, I.J., Harris, A.L., Bicknell, R.: A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions. Br. J. Cancer 69(5), 890–898 (1994)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. ML 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Breiman, L.: Random forests. ML 45(1), 5–32 (2001)

    MATH  Google Scholar 

  6. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selection. IEEE PAMI 28(12), 1931–1947 (2006)

    Article  Google Scholar 

  7. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. AI 89(1-2), 31–71 (1997)

    MATH  Google Scholar 

  8. Dong, L.: A comparison of multi-instance learning algorithms. Master’s thesis, University of Waikato (2006)

    Google Scholar 

  9. Foulds, J.: Learning instance weights in multi-instance learning. Master’s thesis, University of Waikato (2008)

    Google Scholar 

  10. Frank, E., Xu, X.: Applying propositional learning algorithms to multi-instance data. Technical report, Dept. of Computer Science, University of Waikato (2003)

    Google Scholar 

  11. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)

    Google Scholar 

  12. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: ICML, pp. 179–186 (2002)

    Google Scholar 

  13. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 241–252. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS (1997)

    Google Scholar 

  15. Mayo, M.: Effective classifiers for detecting objects. In: CIRAS (2007)

    Google Scholar 

  16. Michie, D., Muggleton, S., Page, D., Srinivasan, A.: A new East-West challenge. Technical report, Oxford University Computing Laboratory (1994)

    Google Scholar 

  17. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. ML 52(3), 239–281 (2003)

    MATH  Google Scholar 

  18. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE PAMI 28(3), 416–431 (2006)

    Article  MATH  Google Scholar 

  19. Platt, J.: Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning, 185–208 (1999)

    Google Scholar 

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Reutemann, P.: Development of a propositionalization toolbox. Master’s thesis, Albert Ludwigs University of Freiburg (2004)

    Google Scholar 

  22. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: ILP, pp. 217–232 (1994)

    Google Scholar 

  23. Wang, C., Scott, S.D., Zhang, J., Tao, Q., Fomenko, D., Gladyshev, V.: A study in modeling low-conservation protein superfamilies. Technical report, Dept. of Comp. Sci., University of Nebraska-Lincoln (2004)

    Google Scholar 

  24. Wang, J., Zucker, J.-D.: Solving the multiple-instance problem: A lazy learning approach. In: ICML, pp. 1119–1125 (2000)

    Google Scholar 

  25. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance problems. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  27. Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 272–281. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Zhang, M.-L., Zhou, Z.-H.: Multi-instance clustering with applications to multi-instance prediction. Applied Intelligence (in press)

    Google Scholar 

  29. Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning technique. In: NIPS, pp. 1073–1080 (2001)

    Google Scholar 

  30. Zhou, Z.-H., Zhang, M.-L.: Solving multi-instance problems with classifier ensemble based on constructive clustering. KAIS 11(2), 155–170 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Foulds, J., Frank, E. (2008). Revisiting Multiple-Instance Learning Via Embedded Instance Selection. In: Wobcke, W., Zhang, M. (eds) AI 2008: Advances in Artificial Intelligence. AI 2008. Lecture Notes in Computer Science(), vol 5360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89378-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89378-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89377-6

  • Online ISBN: 978-3-540-89378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics