Tiara: A Self-stabilizing Deterministic Skip List

  • Thomas Clouser
  • Mikhail Nesterenko
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5340)


We present Tiara — a self-stabilizing peer-to-peer network maintenance algorithm. Tiara is truly deterministic which allows it to achieve exact performance bounds. Tiara allows logarithmic searches and topology updates. It is based on a novel sparse 0-1 skip list. We rigorously prove the algorithm correct in the shared register model. We then describe its extension to a ring and incorporation of crash tolerance.


Overlay Network Failure Detector Bottom Level Neighbor Relation Correctness Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: SOSP 2001: Proceedings of the eighteenth ACM symposium on Operating systems principles, pp. 131–145. ACM, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Shah, G.: Skip graphs. In: SODA 2003: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 384–393. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  3. 3.
    Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data structure for distributed environments. In: SODA 2004: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 318–327. Society for Industrial and Applied Mathematics, Philadelphia (2004)Google Scholar
  4. 4.
    Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dynamic overlay network for routing, data management, and multicasting. In: SPAA 2004: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 170–179. ACM, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: a scalable overlay network with practical locality properties. In: USITS 2003: Proceedings of the 4th conference on USENIX Symposium on Internet Technologies and Systems, p. 9. USENIX Association, Berkeley (2003)Google Scholar
  6. 6.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC 2002: Proceedings of the twenty-first annual symposium on Principles of distributed computing, pp. 183–192. ACM, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable network. In: SIGCOMM 2001: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 161–172. ACM, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)CrossRefGoogle Scholar
  10. 10.
    Awerbuch, B., Scheideler, C.: Group spreading: A protocol for provably secure distributed name service. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Alima, L.O., Haridi, S., Ghodsi, A., El-Ansary, S., Brand, P.: Position paper: in distributed k-ary structured overlay networks. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: ALENEX 2007: Proceedings of the Workshop on Algorithm Engineering and Experiments, January 2007. SIAM, Philadelphia (2007)Google Scholar
  13. 13.
    Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology p2p systems. In: P2P 2005: Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing, Washington, DC, USA, pp. 39–46. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  14. 14.
    Hérault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announcement: Self-stabilizing spanning tree algorithm for large scale systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Cramer, C., Fuhrmann, T.: Isprp: a message-efficient protocol for initializing structured p2p networks. In: IPCCC 2005: Proceedings of the 24th IEEE International Performance Computing and Communications Conference, April 2005, pp. 365–370. IEEE, Los Alamitos (2005)Google Scholar
  16. 16.
    Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-to-peer systems. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 82–96. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial filters. In: ICDCS 2007: Proceedings of the 27th International Conference on Distributed Computing Systems, Washington, DC, USA, p. 27. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  18. 18.
    Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. Distributed Computing 20(5), 375–388 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Dolev, D., Hoch, E., van Renesse, R.: Self-stabilizing and byzantine-tolerant overlay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–357. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33(6), 668–676 (1990)CrossRefGoogle Scholar
  21. 21.
    Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: SODA 1992: Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms, pp. 367–375. Society for Industrial and Applied Mathematics, Philadelphia (1992)Google Scholar
  22. 22.
    Harvey, N.J.A., Munro, J.I.: Deterministic skipnet. Inf. Process. Lett. 90(4), 205–208 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. Journal of the ACM 43(4), 685–722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Communications of the ACM 43(2), 225–267 (1996)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list. Technical Report TR-KSU-CS-2008-04, Department of Computer Science, Kent State University (June 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Clouser
    • 1
  • Mikhail Nesterenko
    • 1
  • Christian Scheideler
    • 2
  1. 1.Deparment of Computer ScienceKent State UniversityKentUSA
  2. 2.Institute of Computer ScienceTechnical University of MunichGarchingGermany

Personalised recommendations