An Improved Impossible Differential Attack on MISTY1

  • Orr Dunkelman
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5350)

Abstract

MISTY1 is a Feistel block cipher that received a great deal of cryptographic attention. Its recursive structure, as well as the added FL layers, have been successful in thwarting various cryptanalytic techniques. The best known attacks on reduced variants of the cipher are on either a 4-round variant with the FL functions, or a 6-round variant without the FL functions (out of the 8 rounds of the cipher).

In this paper we combine the generic impossible differential attack against 5-round Feistel ciphers with the dedicated Slicing attack to mount an attack on 5-round MISTY1 with all the FL functions with time complexity of 246.45 simple operations. We then extend the attack to 6-round MISTY1 with the FL functions present, leading to the best known cryptanalytic result on the cipher. We also present an attack on 7-round MISTY1 without the FL layers.

References

  1. 1.
    Babbage, S., Frisch, L.: On MISTY1 higher order differential cryptanalysis. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Knudsen, L.R.: The Security of Feistel Ciphers with Six Rounds or Less. Journal of Cryptology 15(3), 207–222 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kühn, U.: Improved cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.G. (ed.) CT-RSA 2008, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Matsui, M.: Block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 64–74. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Tanaka, H., Hisamatsu, K., Kaneko, T.: Strength of MISTY1 without FL function for higher order differential attack. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 221–230. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Orr Dunkelman
    • 1
  • Nathan Keller
    • 2
  1. 1.Département d’Informatique, CNRS, INRIA’Ecole Normale SupérieureParisFrance
  2. 2.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations