Concurrently Secure Identification Schemes Based on the Worst-Case Hardness of Lattice Problems

  • Akinori Kawachi
  • Keisuke Tanaka
  • Keita Xagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5350)

Abstract

In this paper, we show that two variants of Stern’s identification scheme [IEEE Transaction on Information Theory ’96] are provably secure against concurrent attack under the assumptions on the worst-case hardness of lattice problems. These assumptions are weaker than those for the previous lattice-based identification schemes of Micciancio and Vadhan [CRYPTO ’03] and of Lyubashevsky [PKC ’08].We also construct efficient ad hoc anonymous identification schemes based on the lattice problems by modifying the variants.

Keywords

Lattice-based cryptography identification schemes concurrent security ad hoc anonymous identification schemes 

References

  1. 1.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC 1996, pp. 99–108 (1996)Google Scholar
  2. 2.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC 1997, pp. 284–293 (1997)Google Scholar
  3. 3.
    Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Damgård, I.B., Pedersen, T.P., Pfizmann, B.: On the existence of statistically hiding bit commitment schemes and fail-stop signatures. Journal of Cryptology 10(3), 163–194 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Damgård, I.B., Pedersen, T.P., Pfizmann, B.: Statistical Secrecy and Multibit Commitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula closure of SZK. In: FOCS 1994, pp. 454–465 (1994)Google Scholar
  7. 7.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC 1990, pp. 416–426 (1990)Google Scholar
  9. 9.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)Google Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography: Volume I – Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. ECCC 3(42) (1996)Google Scholar
  12. 12.
    Halevi, S., Micali, S.: Practical and provably-secure commitment scheme from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2007)Google Scholar
  14. 14.
    Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational Complexity 16, 365–411 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective. Kluwer Academic Publishers, Dordrecht (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM Journal on Computing 37(1), 267–302 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Peikert, C.: Limits on the hardness of lattice problems in l p norms. Computational Complexity 17(2), 300–351 (2008)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)Google Scholar
  25. 25.
    Shamir, A.: A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Transactions on Information Theory 30(5), 699–704 (1984)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Stern, J.: A new paradigm for public key identification. IEEE Transactions on Information Theory 42(6), 749–765 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wu, Q., Chen, X., Wang, C., Wang, Y.: Shared-key signature and its application to anonymous authentication in ad hoc group. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 330–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Akinori Kawachi
    • 1
  • Keisuke Tanaka
    • 1
  • Keita Xagawa
    • 1
  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyJapan

Personalised recommendations