Advertisement

An Object-oriented Model of the Cardiovascular System with a Focus on Physiological Control Loops

  • Anja BrunbergEmail author
  • D. Abel
  • R. Autschbach
Part of the IFMBE Proceedings book series (IFMBE, volume 22)

Abstract

As means for analysis of physiological control loops, but also to synthesize technological support (e. g. artificial heart) and to help deduce therapeutical measures, an object-oriented model in form of an open and expandable library is developed. This modeling method has many advantages compared to existing signal-oriented simulation models as will be shown in this paper.

The simulation model shows good correspondence with physiological data, and offers a wide field of possible applications, such as research, development and training.

Keywords

Modeling simulation cardiovascular system physiological control loops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avolio AP (1980) Multi-branched model of the human arterial system. Med & Biol Eng & Comput 18: 709–718CrossRefGoogle Scholar
  2. 2.
    Ursino M (1998) Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol 275: H1733–H1747Google Scholar
  3. 3.
    Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Ann Rev Physiol 34: 13–44CrossRefGoogle Scholar
  4. 4.
    Nötges T, Hölemann S, Bayer Botero N, Abel D (2007) Objektorientierte Modellierung, Simulation und Regelung dynamischer Systeme am Beispiel eines Oxyfuel-Kraftwerksprozesses. at — Automatisierungstechnik 55: 236–243CrossRefGoogle Scholar
  5. 5.
    Brunberg A, Autschbach R, Abel D (2007) Ein objektorinetierter Ansatz zur Modellierung des menschlichen Herz-Kreislauf-Systems. at — Automatisierungstechnik, in pressGoogle Scholar
  6. 6.
    Magosso E, Biavati V, Ursino M (2001) Role of the Baroreflex in Cardiovascular Instability: A Modeling Study. Cardiovascular Engineering 1: 101–115CrossRefGoogle Scholar
  7. 7.
    Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35: 117–126Google Scholar
  8. 8.
    Gaasch WH, Cole JS, Quinones MA, Alexander JK (1975) Dynamic determinants of letf ventricular diastolic pressure-volume relations in man. Circulation 51: 317–323Google Scholar
  9. 9.
    Piene H (1984) Impedance matching between ventricle and load. Ann Biomed Eng 12: 191–207CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hunter WC, Janicki JS, Weber KT, Nordergraaf A (1983) Systolic mechanical properties of the left ventricle. Effects of volume and contractile state. Circ Res 52: 319–327Google Scholar
  11. 11.
    Ursino M, Magosso E (2003) Role of short-term cardiovascular regulation in heart period variability: a modeling study. Am J Physiol Heart Circ Physiol 284: H1479–H1493Google Scholar
  12. 12.
    Lu K, Clark JW, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol 281, H2661–H2679Google Scholar
  13. 13.
    Klinke R, Pape H, Silbernagl S (2003) Physiologie. Georg Thieme Verlag, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Automatic ControlRWTH Aachen UniversityAachenGermany
  2. 2.Department for Cardiac and Thorax SurgeryUniversity Hospital AachenAachenGermany

Personalised recommendations