Preparation and Characterization of Dextran-Covered Fe3O4 Nanoparticles for Magnetic Particle Imaging

  • Kerstin Lüdtke-BuzugEmail author
  • Sven Biederer
  • Timo Sattel
  • Tobias Knopp
  • Thorsten M. Buzug
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 22)


Magnetic particle imaging (MPI) is a recently proposed method for the visualization of the spatial distribution of iron-oxide nanoparticles. The principle is based on the superparamagnetic nature of Fe3O4 particles (SPIOs). Iron-oxide particles covered with dextran and derivates are widely used as contrast agents in MRI imaging. However, besides the spatial bio-distribution the image quality of the magnetic-particle imaging concept is determined by the particle diameter as well. Moreover, it is the particle size distribution that affects the measured magnetization response within MPI. Therefore, the spectral analysis of the synthesized nanoparticles is an essential assay step for particle validation.


magnetic nanoparticles SPIO paramagetism magnetic particle imaging photon cross-correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleich B, Weizenecker J. (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature, 435:1214–1217CrossRefGoogle Scholar
  2. 2.
    Lonnemark M, Hemmigsson A, Carlsten J (1988) Superparamagnetic particles as a MRI contrast agent for the gastrointestinal tract. Acta Radiol 29:599–602Google Scholar
  3. 3.
    Majumdar S, Zoghbi S S, Gore, J C (1988) Regional differences in rat brain displayed by fast MRI with superparamagnetic contrast agents. Magn Reson Imaging 6:611–615CrossRefGoogle Scholar
  4. 4.
    Rozenman Y, Zou X (1989) Cardiovascular MRI with ferrite particles: The utility of a superparamagnetic contrast agent. Abstract SMRM Amsterdam, 1:353Google Scholar
  5. 5.
    Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) J Magn Magn. Mater 201: 413.CrossRefGoogle Scholar
  6. 6.
    Kunku A, Ekmekyapar A, Akmil C, Abbason T (2004) Ind Eng Chem Res 43: 161.CrossRefGoogle Scholar
  7. 7.
    Kim Y S, Kim Y H (2003) J Magn Magn Mater 267:105.CrossRefGoogle Scholar
  8. 8.
    Nakatsuka K, Jeyadevan B, Neveu S (2002) J Magn Magn Mater, 252:360.CrossRefGoogle Scholar
  9. 9.
    Renshaw P, Owen C S, Mac Laughlin A, Frey T G, Leigh J S J (1986) Ferromagnetic contrast agents: A new approach. Magn Reson Med 3:217–225CrossRefGoogle Scholar
  10. 10.
    Widder D J, Edelman R R, Grief W L, Monda L (1987) Magnetite albumin suspension: A superparamagnetic oral MR contrast agent. AJR 149:839–843Google Scholar
  11. 11.
    Matuszewski L, Tombach B, Heindel W, Bremer C (2007) Molekulare und parametrische Bildgebung mit Eisenoxiden, Der Radiologe 47(1):34–42CrossRefGoogle Scholar
  12. 12.
    Witt W, Aberle L, Geers H (2003) Measurement of particle size and stability of nanoparticels in opaque suspensions and emulsions with photon cross correlation spectroscopy. Particulate Systems Analysis, Harrogate, UKGoogle Scholar
  13. 13.
    Biederer S, Sattel T, Knopp T, Lüdtke-Buzug K, Gleich B, Weizenegger J, Borgert J, Buzug T M (2008) A Spectrometer for Magnetic Particle Imaging. 4th European Congress for Medical and Biomedical Engineering in pressGoogle Scholar
  14. 14.
    Demirer M (2006) Controlled synthesis of superparamagnetic iron oxide nanoparticles in the presence of poly(acrylic acid). Master thesis, Koc UniversityGoogle Scholar
  15. 15.
    Gupta A K, Gupta A (2005) Synthesis and surface engineering or iron oxid nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  16. 16.
    Groman E V, Josephson L, Lewis J M (1989) Biologically degradable superparamagnetic materials for use in clinical applications. US 4827945Google Scholar
  17. 17.
    Schätzel K J (1991) Suppression of multiple scattering by photon cross-correlation techniques. Mod Optics 38:1849–1865CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kerstin Lüdtke-Buzug
    • 1
    Email author
  • Sven Biederer
    • 1
  • Timo Sattel
    • 1
  • Tobias Knopp
    • 1
  • Thorsten M. Buzug
    • 1
  1. 1.Institute of Medical EngineeringUniversity of LübeckLübeckGermany

Personalised recommendations