On the Structure of Small Motif Recognition Instances

  • Christina Boucher
  • Daniel G. Brown
  • Stephane Durocher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5280)


Given a set of sequences, S, and degeneracy parameter, d, the Consensus Sequence problem asks whether there exists a sequence that has Hamming distance at most d from each sequence in S. A valid motif set is a set of sequences for which such a consensus sequence exists, while a decoy set is a set of sequences that does not have a consensus sequence but whose pairwise Hamming distances are all at most 2d. At present, no efficient solution is known to the Consensus Sequence problem when the number of sequences is greater than three. For instances of Consensus Sequence with binary sequences and cardinality four, we present a combinatorial characterization of decoy sets and a linear-time exact algorithm, resolving an open problem posed by Gramm et al. [7].


Consensus Sequence Integer Linear Program Binary Sequence Optimal Sequence Motif Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brejová, B., Brown, D., Harrower, I., López–Ortiz, A., Vinař, T.: Sharper upper and lower bounds for an approximation scheme for Consensus–Pattern. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005, vol. 3537, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brejová, B., Brown, D., Harrower, I., Vinař, T.: New bounds for motif-finding in strong instances. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 94–105. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cohen, G., Honkala, I., Litsyn, S., Sole, P.: Long packing and covering codes. IEEE Trans. Inf. Theory 43(5), 1617–1619 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fellows, M., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26(2), 141–167 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Frances, M., Litman, A.: On covering problems of codes. Th. Comp. Sys. 30, 113–119 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Graham, R.L., Sloane, N.J.A.: On the covering radius of codes. Trans. Inf. Theory 31, 385–401 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for Closest String and related problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string and related problems. Algorithmica 37(1), 25–42 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gramm, J., Guo, J., Niedermeier, R.: Parameterized intractability of distinguishing substring selection. Th. Comp. Sys. 39(4), 545–560 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. In: Proc. SODA 1999, pp. 633–642 (1999)Google Scholar
  11. 11.
    Lenstra, W.H.: Integer programming with a fixed number of variables. Math. of OR 8, 538–548 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. J. Comp. and Sys. Sci. 65(1), 73–96 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proc. ISMB 2000, pp. 344–354 (2000)Google Scholar
  14. 14.
    Sze, S., Lu, S., Chen, J.: Integrating sample-driven and patter-driven approaches in motif finding. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 438–449. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christina Boucher
    • 1
  • Daniel G. Brown
    • 1
  • Stephane Durocher
    • 1
  1. 1.D. R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations