Advertisement

MM-ulator: Towards a Common Evaluation Platform for Mixed Mode Environments

  • Matthias Kropff
  • Christian Reinl
  • Kim Listmann
  • Karen Petersen
  • Katayon Radkhah
  • Faisal Karim Shaikh
  • Arthur Herzog
  • Armin Strobel
  • Daniel Jacobi
  • Oskar von Stryk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5325)

Abstract

We investigate the interaction of mobile robots, relying on information provided by heterogeneous sensor nodes, to accomplish a mission. Cooperative, adaptive and responsive monitoring in Mixed-Mode Environments (MMEs) raises the need for multi-disciplinary research initiatives. To date, such research initiatives are limited since each discipline focusses on its domain specific simulation or testbed environment. Existing evaluation environments do not respect the interdependencies occurring in MMEs. As a consequence, holistic validation for development, debugging, and performance analysis requires an evaluation tool incorporating multi-disciplinary demands. In the context of MMEs, we discuss existing solutions and highlight the synergetic benefits of a common evaluation tool. Based on this analysis we present the concept of the MM-ulator: a novel architecture for an evaluation tool incorporating the necessary diversity for multi-agent hard-/software-in-the-loop simulation in a modular and scalable way.

Keywords

Sensor Node Wireless Sensor Network Mobile Robot Virtual Node Visual Servoing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Epic games, unreal engine (2007), http://www.epicgames.com
  2. 2.
    Microsoft Robotics Studio (2007), http://msdn.microsoft.com/robotics/
  3. 3.
    Balakirsky, S., Scrapper, C., Carpin, S., Lewis, M.: USARSim: providing a framework for multi-robot performance evaluation. In: Proceedings of PerMIS (2006)Google Scholar
  4. 4.
    Balakirsky, S., Scrapper, C., Messina, E.: Mobility open architecture simulation and tools environment. In: Proc. of the Intl. Conf. on Integration of Knowledge Intensive Multi-Agent Systems (2005)Google Scholar
  5. 5.
    Blank, D.S., Kumar, D., Meeden, L., Yanco, H.: Pyro: A python-based versatile programming environment for teaching robotics. Journal of Educational Resources in Computing (JERIC) (2004)Google Scholar
  6. 6.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: Proc. of the 2007 IEEE Intl. Conf. on Robotics and Automation (2007)Google Scholar
  7. 7.
    Collett, T.H.J., MacDonald, B.A., Gerkey, B.: Player 2.0: Toward a practical robot programming framework. In: Proc. of the Australasian Conf. on Robotics and Automation (2005)Google Scholar
  8. 8.
    Cowan, N., Lopes, G., Koditschek, D.: Rigid body visual servoing using navigation functions. In: Proc. of the 39th IEEE Conf. on Decision and Control (2000)Google Scholar
  9. 9.
    Engel, M., Freisleben, B., Smith, M., Hanemann, S.: Wireless Ad-Hoc Network Emulation Using Microkernel-Based Virtual Linux Systems. In: Proc. of 5th EUROSIM Congress on Modeling and Simulation, pp. 198–203 (2004)Google Scholar
  10. 10.
    Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. on Automatic Control 49(9), 1465–1476 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Flynn, J., Tewari, H., O’Mahony, D.: JEmu: A Real Time Emulation System for Mobile Ad Hoc Networks. In: Proc. of the SCS Conf. on Communication Networks and Distributed Systems Modeling and Simulation, pp. 115–120 (2002)Google Scholar
  12. 12.
    Friedmann, M., Petersen, K., von Stryk, O.: Adequate motion simulation and collision detection for soccer playing humanoid robots. In: Proc. 2nd Workshop on Humanoid Soccer Robots at the 2007 IEEE-RAS Intl. Conf. on Humanoid Robots (2007)Google Scholar
  13. 13.
    Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E., Schoellhammer, T.: A system for simulation, emulation, and deployment of heterogeneous sensor networks. In: Proc. of the 1st Intl. Conf. on Embedded Networked Sensor Systems (2004)Google Scholar
  14. 14.
    He, R., Yuan, M., Hu, J., Zhang, H., Kan, Z., Ma, J.: A Real-time Scalable and Dynamical Test System for MANET. In: Proc. of 14th IEEE Conf. on Personal, Indoor and Mobile Radio Communications, pp. 1644–1648 (2003)Google Scholar
  15. 15.
    Johansson, A., Murphy, B., Suri, N.: On the impact of injection triggers for os robustness evaluation. In: The 18th IEEE Intl. Symp. on Software Reliability Engineering (2007)Google Scholar
  16. 16.
    Khelil, A., Shaikh, F.K., Ayari, B., Suri, N.: MWM: A map-based world model for event-driven wireless sensor networks. In: The 2nd ACM International Conference on Autonomic Computing and Communication Systems (AUTONOMICS) (to appear, 2008)Google Scholar
  17. 17.
    Koenig, N., Howard, A.: Gazebo - 3D multiple robot simulator with dynamics (2003), http://playerstage.sourceforge.net/gazebo/gazebo.html
  18. 18.
    Laue, T., Spiess, K., Röfer, T.: SimRobot – A General Physical Robot Simulator and Its Application in RoboCup. In: Bredenfeld, A., et al. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of entire tinyos applications. In: Proc. of the 1st Intl. Conf. on Embedded Networked Sensor Systems, pp. 126–137 (2003)Google Scholar
  20. 20.
    Lin, T., Midkiff, S.F., Park, J.S.: A Dynamic Topology Switch for the Emulation of Wireless Mobile Ad Hoc Networks. In: Proc. of the 27th Annual IEEE Conf. on Local Computer Networks, pp. 791–798 (2002)Google Scholar
  21. 21.
    Mahadevan, P., Rodriguez, A., Becker, D., Vahdat, A.: MobiNet: A Scalable Emulation Infrastructure for Ad hoc and Wireless Networks. In: Proc. of Intl. Workshop on Wireless Traffic Measurements and Modeling, pp. 7–12 (2005)Google Scholar
  22. 22.
    Maier, S., Herrscher, D., Rothermel, K.: On Node Virtualization for Scalable Network Emulation. In: Proc. of Intl. Symp. on Performance Evaluation of Computer and Telecommunication Systems, pp. 917–928 (2005)Google Scholar
  23. 23.
    Matthes, M., Biehl, H., Lauer, M., Drobnik, O.: MASSIVE: An Emulation Environment for Mobile Ad-Hoc Networks. In: Proc. of IEEE 2nd Annual Conf. on Wireless On-demand Network Systems and Services, pp. 54–59 (2005)Google Scholar
  24. 24.
    Michel, O.: Cyberbotics ltd. - webots(tm): Professional mobile robot simulation. Intl. Journal of Advanced Robotic Systems 1(1), 39–42 (2004)Google Scholar
  25. 25.
    Puzar, M., Plagemann, T.: NEMAN: A Network Emulator for Mobile Ad-Hoc Networks. In: Proc. of 8th Intl. Conf. on Telecommunications (2005)Google Scholar
  26. 26.
    Titzer, B.L., Lee, D., Palsberg, J.: Avrora: Scalable sensor network simulation with precise timing. In: Proc. of 4th Intl. Conf. on Information Processing in Sensor Networks, Los Angeles (2005)Google Scholar
  27. 27.
    Zheng, P., Ni, L.M.: EMWIN: Emulating a Mobile Wireless Network Using a Wired Network. In: Proc. of 5th ACM Intl. Workshop on Wireless Mobile Multimedia, pp. 64–71 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthias Kropff
    • 1
  • Christian Reinl
    • 1
  • Kim Listmann
    • 1
  • Karen Petersen
    • 1
  • Katayon Radkhah
    • 1
  • Faisal Karim Shaikh
    • 1
  • Arthur Herzog
    • 1
  • Armin Strobel
    • 1
  • Daniel Jacobi
    • 1
  • Oskar von Stryk
    • 1
  1. 1.Research Training Group “Cooperative, Adaptive and Responsive Monitoring in Mixed Mode Environments”Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations