An Emphatic Humanoid Robot with Emotional Latent Semantic Behavior

  • Antonio Chella
  • Giovanni Pilato
  • Rosario Sorbello
  • Giorgio Vassallo
  • Francesco Cinquegrani
  • Salvatore Maria Anzalone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5325)


In this paper we propose an Entertainment Humanoid Robot model based on Latent Semantic Analysis, that tries to exhibit an emotional behavior in the interaction with human. Latent Semantic Analysis (LSA), based on vector space allows the coding of the words semantics by specific statistical computations applied to a large corpus of text. We illustrate how the creation and the use of this emotional conceptual space can provide a framework upon which to build “Latent Semantic Behavior” because it simulates the emotional-associative capabilities of human beings. This approach integrates traditional knowledge representation with intuitive capabilities provided by geometric and sub-symbolic information modeling. To validate the effectiveness of our approach we have simulated an Humanoid Robot Robovie-M on dInfoBots a linux based framework developed in our Mobile Robot Lab.


Humanoid Robot Architecture Entertainment Robot Machine Learning Applications 3D Robot Simulation Human Robot Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  2. 2.
    Chella, A., Frixione, M., Gaglio, S.: An Architecture for Autonomous Agents Exploiting Conceptual Representations. Robotics and Autonomous Systems 25, 231–240 (1998)CrossRefGoogle Scholar
  3. 3.
    Agostaro, F., Augello, A., Pilato, G., Vassallo, G., Gaglio, S.: A Conversational Agent Based on a Conceptual Interpretation of a Data Driven Semantic Space. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem:The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review 104, 211–240 (1997)CrossRefGoogle Scholar
  5. 5.
    Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)CrossRefGoogle Scholar
  6. 6.
    Thagard, P., Shelley, C.P.: Emotional analogies and analogical inference. In: Gentner, D., Holyoak, K.H., Kokinov, B.K. (eds.) The analogical mind: Perspectives from cognitive science, pp. 335–362. MIT Press, Cambridge (2001)Google Scholar
  7. 7.
    Berry, M.W., Dumais, S.T., Gavin, W.: O’Brien Using Linear Algebra for Intelligent Information Retrieval. SIAM Review 37(4), 573–595 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Peters, S., Widdows, D.: Word vectors and quantum logic experiments with negation and disjunction. In: Mathematics of Language, Bloomington, Indiana, vol. 8 (June 2003)Google Scholar
  9. 9.
    Gardenfors, P.: Conceptual Spaces. MIT Press, Bradford Books, Cambridge (2000)zbMATHGoogle Scholar
  10. 10.
    Ultsch, A.: The Integration of Connectionist Models with Knowledge based Systems: Hybrid Systems. In: Proc. of the IEEE SMC 1998 International Conference, San Diego, October 11-14, 1998, pp. 1530–1535 (1998) Google Scholar
  11. 11.
    Zhu, H.: Bayesian geometric theory of learning algorithms. In: Proceedings of the International Conference on Neural Networks (ICNN 1997), vol. 2, pp. 1041–1044 (1997)Google Scholar
  12. 12.
    Landauer, T.K., Laham, D., Foltz, P.W.: Learning human-like knowledge by Singular Value Decomposition: A progress report. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 45–51. MIT Press, Cambridge (1998)Google Scholar
  13. 13.
    Dautenhahn, K., Billard, A.: Bringing up robots or psychology of socially intelligent robots: From theory to implementation. In: Proc. 3rd Int. Conf. on Autonomous Agents, Seattle WA (1999)Google Scholar
  14. 14.
    Fujita, M.: Digital Creatures for Future Entertainment Robotics. In: IEEE International Conference on Robotics and Automation, San Francisco, California, pp. 801–806 (2000)Google Scholar
  15. 15.
    Arkin, R., Fujita, M., Takagi, T., Hasegawa, R.: Ethological Modeling and Architecture for an Entertaiment Robot. In: IEEE Int. Conf. on Robotics & Automation, Seoul, pp. 453–458 (2001)Google Scholar
  16. 16.
    Lakemayer, G.: On Sensing and off-line interpreting in GOLOG. In: Logical Foundations for Cognitive Agents, Contributions in Honor of Ray Reiter, pp. 173–187. Springer, Berlin (1999)CrossRefGoogle Scholar
  17. 17.
    Chella, A., Sorbello, R., Anzalone, S.M., Cinquegrani, F., Caccìa, D.: A New Architecture Based on a Simulation Environment for Four Legged and Humanoid Robots. In: 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics, MMAR 2007 (August 2007)Google Scholar
  18. 18.
    Menegatti, E., Silvestri, G., Pagello, E., Greggio, N., Cisternino, N., Mazzanti, F., Sorbello, R., Chella, A.: 3D models of Humanoid Soccer Robot in USARSim and Robotics Studio simulators. IJHR 2008, International Journal of Humanoid Robotics (2008)Google Scholar
  19. 19.
    Colon, E., Sahli, H., Baudoin, Y.: CoRoBa, a Multi Mobile Robot Control and Simulation Framework. Int. Journal of Advanced Robotic Systems (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Antonio Chella
    • 1
  • Giovanni Pilato
    • 2
  • Rosario Sorbello
    • 1
  • Giorgio Vassallo
    • 1
  • Francesco Cinquegrani
    • 1
  • Salvatore Maria Anzalone
    • 1
  1. 1.Dipartimento di Ingegneria InformaticaUniversità degli Studi di PalermoItaly
  2. 2.ICAR – Istituto di CAlcolo e Reti ad Alte Prestazioni Italian National Research Council (CNR)Italy

Personalised recommendations