Advertisement

Knowledge Processing Middleware

  • Fredrik Heintz
  • Jonas Kvarnström
  • Patrick Doherty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5325)

Abstract

Developing autonomous agents displaying rational and goal-directed behavior in a dynamic physical environment requires the integration of a great number of separate deliberative and reactive functionalities. This integration must be built on top of a solid foundation of data, information and knowledge having numerous origins, including quantitative sensors and qualitative knowledge databases. Processing is generally required on many levels of abstraction and includes refinement and fusion of noisy sensor data and symbolic reasoning. We propose the use of knowledge processing middleware as a systematic approach for organizing such processing. Desirable properties of such middleware are presented and motivated. We then argue that a declarative stream-based system is appropriate to provide the desired functionality. Different types of knowledge processes and components of the middleware are described and motivated in the context of a UAV traffic monitoring application. Finally DyKnow, a concrete example of stream-based knowledge processing middleware, is briefly described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghallab, M.: On chronicles: Representation, on-line recognition and learning. In: Proc. KR 1996, pp. 597–607 (1996)Google Scholar
  2. 2.
    Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Autonomous Systems 43(2-3), 85–96 (2003)CrossRefGoogle Scholar
  3. 3.
    Heintz, F., Doherty, P.: Managing dynamic object structures using hypothesis generation and validation. In: Proc. Workshop on Anchoring Symbols to Sensor Data (2004)Google Scholar
  4. 4.
    Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior – a UAV tracking and monitoring application. In: Proc. Fusion 2007, Quebec, Canada (2007)Google Scholar
  5. 5.
    Heintz, F., Doherty, P.: A knowledge processing middleware framework and its relation to the JDL data fusion model. J. Intelligent and Fuzzy Systems 17(4) (2006)Google Scholar
  6. 6.
    Jensen, C., Dyreson, C. (eds.): The consensus glossary of temporal database concepts. In: Temporal Databases: Research and Practice (February 1998)Google Scholar
  7. 7.
    Doherty, P., Haslum, P., Heintz, F., Merz, T., Nyblom, P., Persson, T., Wingman, B.: A distributed architecture for autonomous unmanned aerial vehicle experimentation. In: Proc. DARS 2004 (2004)Google Scholar
  8. 8.
    Heintz, F., Doherty, P.: DyKnow: An approach to middleware for knowledge processing. J. Intelligent and Fuzzy Systems 15(1), 3–13 (2004)Google Scholar
  9. 9.
    Bonasso, P., Firby, J., Gat, E., Kortenkamp, D., Miller, D., Slack, M.: Experiences with an architecture for intelligent, reactive agents. J. Experimental and Theoretical AI 9 (1997)Google Scholar
  10. 10.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  11. 11.
    Pell, B., Gamble, E.B., Gat, E., Keesing, R., Kurien, J., Millar, W., Nayak, P.P., Plaunt, C., Williams, B.C.: A hybrid procedural/deductive executive for autonomous spacecraft. In: Proc. AGENTS 1998, pp. 369–376 (1998)Google Scholar
  12. 12.
    Atkin, M.S., King, G.W., Westbrook, D.L., Heeringa, B., Cohen, P.R.: Hierarchical agent control: a framework for defining agent behavior. In: Proc. AGENTS 2001, pp. 425–432 (2001)Google Scholar
  13. 13.
    Scheutz, M., Kramer, J.: RADIC – a generic component for the integration of existing reactive and deliberative layers for autonomous robots. In: Proc. AAMAS 2006 (2006)Google Scholar
  14. 14.
    Lyons, D., Arbib, M.: A formal model of computation for sensory-based robotics. Robotics and Automation, IEEE Transactions on 5(3), 280–293 (1989)CrossRefGoogle Scholar
  15. 15.
    Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The Saphira architecture: a design for autonomy. J. Experimental and Theoretical AI 9(2–3), 215–235 (1997)CrossRefGoogle Scholar
  16. 16.
    Andronache, V., Scheutz, M.: APOC - a framework for complex agents. In: Proceedings of the AAAI Spring Symposium, pp. 18–25. AAAI Press, Menlo Park (2003)Google Scholar
  17. 17.
    Schlenoff, C., Albus, J., Messina, E., Barbera, A.J., Madhavan, R., Balakrisky, S.: Using 4D/RCS to address AI knowledge integration. AI Mag. 27(2), 71–82 (2006)Google Scholar
  18. 18.
    Hawes, N., Zillich, M., Wyatt, J.: BALT & CAST: Middleware for cognitive robotics. In: Proceedings of IEEE RO-MAN 2007, pp. 998–1003 (2007)Google Scholar
  19. 19.
    Jacobsson, H., Hawes, N., Kruijff, G.J., Wyatt, J.: Crossmodal content binding in information-processing architectures. In: Proc. HRI 2008, Amsterdam, The Netherlands (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fredrik Heintz
    • 1
  • Jonas Kvarnström
    • 1
  • Patrick Doherty
    • 1
  1. 1.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations