Shaped Generic Graph Transformation

  • Frank Drewes
  • Berthold Hoffmann
  • Dirk Janssens
  • Mark Minas
  • Niels Van Eetvelde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5088)


Since the systematic evolution of graph-like program models has become important in software engineering, graph transformation has gained much attention in this area. For specifying model evolution concisely, graph transformation rules should be as expressive as possible. The generic rules proposed in this paper may contain placeholders for graphs of varying number and shape. Expansion of these placeholders by graphs yields the actual transformation rules to be applied. Even rather complex transformations occurring in real-life applications, such as the Pull-Up-Method refactoring operation, can be specified by a single generic rule.


Transformation Rule Multiple Node Graph Transformation Graph Grammar Border Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language for model transformations. J. Software and System Modeling 5(3), 261–288 (2006)CrossRefGoogle Scholar
  2. 2.
    Balasubramanian, D., Narayanan, A., Neema, S., Ness, B., Shi, F., Thibodeaux, R., Karsai, G.: Applying a grouping operator in model transformations. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations: A synchronization mechanism. J. Computer and System Sciences 34, 377–408 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Corradini, A., Ehrig, H., Montanari, U., Padberg, J.: The category of typed graph grammars and its adjunction with categories of derivations. In: [7], pp. 56–74Google Scholar
  5. 5.
    Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): 3rd Int. Conf. on Graph Transformation (ICGT 2006). LNCS, vol. 4178. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: [5], pp. 30–45Google Scholar
  7. 7.
    Cuny, J.E., Ehrig, H., Engels, G., Rozenberg, G. (eds.): Graph Grammars 1994. LNCS, vol. 1073. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars. In: [25], pp. 95–162Google Scholar
  9. 9.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star grammars. In: [5], pp. 77–91Google Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. In: EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: [25], ch. 1, pp. 1–94Google Scholar
  12. 12.
    Fowler, M.: Refactoring—Improving the Design of Existing Code. Object Technology Series. Addison-Wesley, Reading (1999)zbMATHGoogle Scholar
  13. 13.
    Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic graph transformation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  15. 15.
    Habel, A., Hoffmann, B.: Parallel independence in hierarchical graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 178–193. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, B.: Shapely hierarchical graph transformation. In: Proc. IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 30–37 (2001)Google Scholar
  17. 17.
    Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph transformation rules for refactoring. Electronic Notes in Theoretical Computer Science 152(4), 53–67 (2006); Proc. GraMoT 2005CrossRefGoogle Scholar
  18. 18.
    Kahl, W.: A relation-algebraic approach to graph structure transformation, 2001. Habil. Thesis, Fak.für Informatik, Univ. der Bundeswehr München, TR 2002-03Google Scholar
  19. 19.
    Körtgen, A.-T.: Modeling successively connected repetitive subgraphs. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator. In: Proc. 6th Int. Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2007). Electronic Comm. of the EASST, vol. 6 (2007)Google Scholar
  21. 21.
    Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour-preserving transformation. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Minas, M.: Parsing of adaptive star grammars. In: Proc. GraMoT 2006. Electronic Comm. of the EASST, vol. 4 (2006)Google Scholar
  23. 23.
    Plump, D., Habel, A.: Graph unification and matching. In: [7], pp. 75–89Google Scholar
  24. 24.
    Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 128–143. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. I. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  26. 26.
    Schürr, A.: Introduction to the specification language PROGRES. In: Nagl, M. (ed.) IPSEN 1996. LNCS, vol. 1170, pp. 248–279. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Van Eetvelde, N.: A Graph Transformation Approach to Refactoring. Doctoral thesis, Universiteit Antwerpen (May 2007)Google Scholar
  28. 28.
    van Wijngaarden, A., Mailloux, B.J., Peck, J.E.L., Koster, C.H.A., Sintzoff, M., Lindsey, C.H., Meertens, L.G.L.T., Fisker, R.G.: Revised report on the algorithmic language ALGOL 68. Acta Informatica 5, 1–236 (1975)CrossRefzbMATHGoogle Scholar
  29. 29.
    Varró, G., Horváth, A., Varró, D.: Recursive graph pattern matching with magic sets and global search plans. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frank Drewes
    • 1
  • Berthold Hoffmann
    • 2
  • Dirk Janssens
    • 3
  • Mark Minas
    • 4
  • Niels Van Eetvelde
    • 3
  1. 1.Umeå universitetSweden
  2. 2.Universität BremenGermany
  3. 3.Universiteit AntwerpenBelgium
  4. 4.Universität der Bundeswehr MünchenGermany

Personalised recommendations