Advertisement

Abstract

In this article, we propose to use the Discrete EVent system Specification (DEVS) formalism to describe and execute graph transformation control structures. We provide a short review of existing programmed graph rewriting systems, listing the control structures they provide. As DEVS is a timed, highly modular, hierarchical formalism for the description of reactive systems, control structures such as sequence, choice, and iteration are easily modelled. Non-determinism and parallel composition also follow from DEVS’ semantics. The proposed approach is illustrated through the modelling of a simple PacMan game, first in AToM3 and then using DEVS. We show how the use of DEVS allows for modular modification of control structure.

Keywords

Model Transformation Input Port Graph Transformation Parallel Composition Discrete EVent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blostein, D., Fahmy, H., Grbavec, A.: Issues in the practical use of graph rewriting. In: 5th International Workshop on Graph Grammars and Their Application to Computer Science, pp. 38–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: ICSE 2000: Proceedings of the 22nd International Conference on Software Engineering, pp. 742–745. ACM Press, New York (2000)Google Scholar
  3. 3.
    Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Control flow support in metamodel-based model transformation frameworks. In: EUROCON 2005 International Conference on “Computer as a tool”, pp. 595–598. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  4. 4.
    Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G., Varró, D., Varró-Gyapay, S.: Model transformation by graph transformation: A comparative study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satellite Event of MoDELS 2005), Montego Bay, Jamaica (2005)Google Scholar
  5. 5.
    de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism and meta-modelling. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE 2002. LNCS, vol. 2306, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars for multi-paradigm modelling in AToM3. Software and Systems Modeling (SoSyM) 3, 194–209 (2004)CrossRefGoogle Scholar
  7. 7.
    Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of high-performance transformations. In: Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 298–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Agrawal, A.: Metamodel based model transformation language. In: OOPSLA 2003: Companion of the 18th annual ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications, pp. 386–387. ACM Press, New York (2003)Google Scholar
  9. 9.
    Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of a language for model transformations. Software and Systems Modeling (SoSyM) 5, 261–288 (2005)CrossRefGoogle Scholar
  10. 10.
    Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model transformation with a visual control flow language. International Journal of Computer Science (IJCS) 1, 45–53 (2006)Google Scholar
  11. 11.
    Blostein, D., Schürr, A.: Computing with graphs and graph rewriting. Proceedings in Informatics, 1–21 (1999)Google Scholar
  12. 12.
    Schürr, A., Winter, A.J., Zündorf, A.: Graph grammar engineering with progres. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Fischer, T., Niere, J., Turunski, L., Zündorf, A.: Story diagrams: A new graph grammar language based on the Unified Modelling Language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: Moflon: A standardcompliant metamodeling framework with graph transformations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press, London (1984)zbMATHGoogle Scholar
  17. 17.
    Bolduc, J.S., Vangheluwe, H.: The modelling and simulation package PythonDEVS for classical hierarchical DEVS. MSDL Technical report MSDL-TR-2001-01, McGill University (2001)Google Scholar
  18. 18.
    Song, H.: Infrastructure for DEVS modelling and experimentation. MSc dissertation, McGill University (2006)Google Scholar
  19. 19.
    Heckel, R.: Graph transformation in a nutshell. In: Proceedings of the School on Foundations of Visual Modelling Techniques (FoVMT 2004) of the SegraVis Research Training Network. Electronic Notes in Theoretical Computer Science (ENTCS), vol. 148, pp. 187–198. Elsevier, Amsterdam (2006)Google Scholar
  20. 20.
    Chow, A.C.H.: Parallel devs: a parallel, hierarchical, modular modeling formalism and its distributed simulator. Transactions of the Society for Computer Simulation International 13, 55–67 (1996)Google Scholar
  21. 21.
    Gyapay, S., Heckel, R., Varró, D.: Graph transformation with time: Causality and logical clocks. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 120–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Hong, J.S., Song, H.S., Kim, T.G., Park, K.H.: A real-time discrete event system specification formalism for seamless real-time software development. Discrete Event Dynamic Systems 7, 355–375 (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eugene Syriani
    • 1
  • Hans Vangheluwe
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontréalCanada

Personalised recommendations