Visualizing the Pareto Frontier

  • Alexander V. Lotov
  • Kaisa Miettinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5252)


We describe techniques for visualizing the Pareto optimal set that can be used if the multiobjective optimization problem considered has more than two objective functions. The techniques discussed can be applied in the framework of both MCDM and EMO approaches. First, lessons learned from methods developed for biobjective problems are considered. Then, visualization techniques for convex multiobjective optimization problems based on a polyhedral approximation of the Pareto optimal set are discussed. Finally, some visualization techniques are considered that use a pointwise approximation of the Pareto optimal set.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramova, M.: Approximation of a Pareto set on the basis of inexact information. Moscow University Computational Mathematics and Cybernetics 2, 62–69 (1986)MATHGoogle Scholar
  2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 2(4), 469–483 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. Benson, H.P.: An outer–approximation algorithm for generating all efficient extreme points in the outcome set of a multiple-objective linear programming problem. Journal of Global Optimization 13, 1–24 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. Benson, H.P., Sayin, S.: Toward finding global representations of the efficient set in multiple-objective mathematical programming. Naval Research Logistics 44, 47–67 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. Berezkin, V.E., Kamenev, G.K., Lotov, A.V.: Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier. Computational Mathematics and Mathematical Physics 46(11), 1918–1931 (2006)MathSciNetCrossRefGoogle Scholar
  6. Bushenkov, V.A., Lotov, A.V.: Methods for the Constructing and Application of Generalized Reachable Sets (In Russian). Computing Centre of the USSR Academy of Sciences, Moscow (1982)Google Scholar
  7. Bushenkov, V.A., Gusev, D.I., Kamenev, G.K., Lotov, A.V., Chernykh, O.L.: Visualization of the Pareto set in multi-attribute choice problem (In Russian). Doklady of Russian Academy of Sciences 335(5), 567–569 (1993)MATHGoogle Scholar
  8. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. Elsevier, New York (1983)MATHGoogle Scholar
  9. Chernykh, O.L., Kamenev, G.K.: Linear algorithm for a series of parallel two-dimensional slices of multidimensional convex polytope. Pattern Recognition and Image Analysis 3(2), 77–83 (1993)Google Scholar
  10. Chipperfield, A.J., Whideborn, J.F., Fleming, P.J.: Evolutionary algorithms and simulated annealing for MCDM. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory and Applications, pp. 16-1–16-32, Kluwer Academic Publishers, Boston (1999)Google Scholar
  11. Cleveland, W.S.: The Elements of Graphing Data. Wadsworth, Belmont (1985)Google Scholar
  12. Cohon, J., Church, R., Sheer, D.: Generating multiobjective tradeoffs: An algorithm for bicriterion problems. Water Resources Research 15, 1001–1010 (1979)CrossRefGoogle Scholar
  13. Cohon, J.L.: Multiobjective Programming and Planning. Academic Press, New York (1978)MATHGoogle Scholar
  14. Cooke, R.M., van Noortwijk, J.M.: Generic graphics for uncertainty and sensitivity analysis. In: Schueller, G., Kafka, P. (eds.) Safety and Reliability, Proceedings of ESREL ’99, pp. 1187–1192. Balkema, Rotterdam (1999)Google Scholar
  15. Das, I., Dennis, J.: Normal boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8, 631–657 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. Evtushenko, Y., Potapov, M.: Methods of Numerical Solutions of Multicriteria Problems. Soviet Mathematics Doklady 34, 420–423 (1987)MATHGoogle Scholar
  17. Gass, S., Saaty, T.: The Computational Algorithm for the Parametric Objective Function. Naval Research Logistics Quarterly 2, 39 (1955)MathSciNetCrossRefGoogle Scholar
  18. Geoffrion, A.M., Dyer, J.S., Feinberg, A.: An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Management Science 19(4), 357–368 (1972)CrossRefMATHGoogle Scholar
  19. Gusev, D.V., Lotov, A.V.: Methods for decision support in finite choice problems (In Russian). In: Ivanilov, J. (ed.) Operations Research. Models, Systems, Decisions, pp. 15–43. Computing Center of Russian Academy of Sciences, Moscow (1994)Google Scholar
  20. Haimes, Y.Y., Tarvainen, K., Shima, T., Thadathill, J.: Hierachical Multiobjective Analysis of Large-Scale Systems. Hemisphere Publishing Corporation, New York (1990)Google Scholar
  21. Henig, M., Buchanan, J.T.: Generalized tradeoff directions in multiobjective optimization problems. In: Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Multiple Criteria Decision Making – Proceedings of the Tenth International Conference, pp. 47–56. Springer, New York (1994)CrossRefGoogle Scholar
  22. Henig, M., Buchanan, J.T.: Tradeoff directions in multiobjective optimization problems. Mathematical Programming 78(3), 357–374 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. Jahn, J.: Vector Optimization. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  24. Jewel, T.K.: A Systems Approach to Civil Engineering, Planning, Design. Harper & Row, New York (1990)Google Scholar
  25. Kaliszewski, I.: Quantitative Pareto Analysis by Cone Separation Technique. Kluwer, Dordrecht (1994)CrossRefMATHGoogle Scholar
  26. Kamenev, G.K.: Dual adaptive algorithms for polyhedral approximation of convex bodies. Computational Mathematics and Mathematical Physics 42(8) (2002)Google Scholar
  27. Klamroth, K., Tind, J., Wiecek, M.M.: Unbiased approximation in multicriteria optimization. Mathematical Methods of Operations Research 56, 413–437 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. Klimberg, R.: GRADS: A new graphical display system for visualizing multiple criteria solutions. Computers & Operations Research 19(7), 707–711 (1992)CrossRefMATHGoogle Scholar
  29. Krasnoshchekov, P.S., Morozov, V.V., Fedorov, V.V.: Decomposition in design problems (In Russian). Izvestiya Akademii Nauk SSSR, Series Technical Cybernetics (2), 7–17 (1979)Google Scholar
  30. Kubotani, H., Yoshimura, K.: Performance evaluation of acceptance probability functions for multiobjective simulated annealing. Computers & Operations Research 30, 427–442 (2003)MathSciNetCrossRefMATHGoogle Scholar
  31. Larichev, O.: Cognitive validity in design of decision-aiding techniques. Journal of Multi-Criteria Decision Analysis 1(3), 127–138 (1992)CrossRefMATHGoogle Scholar
  32. Lewandowski, A., Granat, J.: Dynamic BIPLOT as the interaction interface for aspiration based decision support systems. In: Korhonen, P., Lewandowski, A., Wallenius, J. (eds.) Multiple Criteria Decision Support, pp. 229–241. Springer, Berlin (1991)Google Scholar
  33. Lomov, B.F.: Philosophical and Theoretical Problems of Psychology. Science Publisher, Moscow (1984)Google Scholar
  34. Lotfi, V., Stewart, T.J., Zionts, S.: An aspiration level interactive model for multiple criteria decision making. Computers & Operations Research 19(7), 671–681 (1992)CrossRefMATHGoogle Scholar
  35. Lotov, A., Berezkin, V., Kamenev, G., Miettinen, K.: Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach. Applied Mathematical Modelling 29(7), 653–672 (2005)CrossRefMATHGoogle Scholar
  36. Lotov, A.V.: Exploration of economic systems with the help of reachable sets (In Russian). In: Proceedings of the International Conference on the Modeling of Economic Processes, Erevan, 1974, pp. 132–137. Computing Centre of USSR Academy of Sciences, Moscow (1975)Google Scholar
  37. Lotov, A.V.: Coordination of Economic Models by the Attainable Sets Method (In Russian). In: Berlyand, E.L., Barabash, S.B. (eds.) Mathematical Methods for an Analysis of Interaction between Industrial and Regional Systems, pp. 36–44. Nauka, Novosibirsk (1983)Google Scholar
  38. Lotov, A.V.: Generalized reachable sets method in multiple criteria problems. In: Lewandowski, A., Stanchev, I. (eds.) Methodology and Software for Interactive Decision Support, pp. 65–73. Springer, Berlin (1989)CrossRefGoogle Scholar
  39. Lotov, A.V., Kamenev, G.K., Berezkin, V.E.: Approximation and Visualization of Pareto-Efficient Frontier for Nonconvex Multiobjective Problems. Doklady Mathematics 66(2), 260–262 (2002)MATHGoogle Scholar
  40. Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Approximation and Visualization of Pareto Frontier. Kluwer Academic Publishers, Boston (2004)CrossRefMATHGoogle Scholar
  41. Louie, P., Yeh, W., Hsu, N.: Multiobjective Water Resources Management Planning. Journal of Water Resources Planning and Management 110(1), 39–56 (1984)CrossRefGoogle Scholar
  42. Mareschal, B., Brans, J.–P.: Geometrical representation for MCDA. European Journal of Operational Research 34(1), 69–77 (1988)MathSciNetCrossRefGoogle Scholar
  43. Mattson, C.A., Messac, A.: Pareto frontier based concept selection under uncertainty, with visualization. Optimization and Engineering 6, 85–115 (2005)MathSciNetCrossRefMATHGoogle Scholar
  44. McClure, D.E., Vitale, R.A.: Polygonal approximation of plane convex bodies. Journal of Mathematical Analysis and Applications 51(2), 326–358 (1975)MathSciNetCrossRefMATHGoogle Scholar
  45. McQuaid, M.J., Ong, T.–H., Chen, H., Nunamaker, J.F.: Multidimensional scaling for group memory visualization. Decision Support Systems 27, 163–176 (1999)CrossRefGoogle Scholar
  46. Meisel, W.S.: Tradeoff decision in multiple criteria decision making. In: Cochrane, J., Zeleny, M. (eds.) Multiple Criteria Decision Making, pp. 461–476. University of South Carolina Press, Columbia (1973)Google Scholar
  47. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  48. Miettinen, K.: Graphical illustration of Pareto optimal solutions. In: Tanino, T., Tanaka, T., Inuiguchi, M. (eds.) Multi-Objective Programming and Goal Programming: Theory and Applications, pp. 197–202. Springer, Berlin (2003)CrossRefGoogle Scholar
  49. Miettinen, K., Mäkelä, M.M.: On generalized trade-off directions in nonconvex multiobjective optimization. Mathematical Programming 92, 141–151 (2002)MathSciNetCrossRefMATHGoogle Scholar
  50. Miettinen, K., Mäkelä, M.M.: Characterizing general trade–off directions. Mathematical Methods of Operations Research 57, 89–100 (2003)MathSciNetCrossRefMATHGoogle Scholar
  51. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research 170(3), 909–922 (2006)CrossRefMATHGoogle Scholar
  52. Miettinen, K., Lotov, A.V., Kamenev, G.K., Berezkin, V.E.: Integration of two multiobjective optimization methods for nonlinear problems. Optimization Methods and Software 18, 63–80 (2003)MathSciNetCrossRefMATHGoogle Scholar
  53. Miettinen, K., Molina, J., González, M., Hernández-Díaz, A., Caballero, R.: Using box indices in supporting comparison in multiobjective optimization. European Journal of Operational Research. To appear (2008), doi:10.1016/j.ejor.2008.05.103Google Scholar
  54. Miller, G.A.: The magical number seven, plus or minus two: Some limits of our capacity for processing information. Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  55. Nefedov, V.N.: On the approximation of Pareto set. USSR Computational Mathematics and Mathematical Physics 24, 19–28 (1984)MathSciNetCrossRefMATHGoogle Scholar
  56. Nefedov, V.N.: Approximation of a set of Pareto-optimal solutions. USSR Computational Mathematics and Mathematical Physics 26, 99–107 (1986)CrossRefMATHGoogle Scholar
  57. Olson, D.: Decision Aids for Selection Problems. Springer, New York (1996)CrossRefGoogle Scholar
  58. Popov, N.: Approximation of a Pareto set by the convolution method. Moscow University Computational Mathematics and Cybernetics (2), 41–48 (1982)Google Scholar
  59. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap Visualization of Population Based Multi Objective Algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 361–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  60. Reuter, H.: An approximation method for the efficiency set of multiobjective programming problems. Optimization 21, 905–911 (1990)MathSciNetCrossRefMATHGoogle Scholar
  61. Roy, B.: Decisions avec criteres multiples. Metra International 11(1), 121–151 (1972)Google Scholar
  62. Ruzika, S., Wiecek, M.M.: Survey paper: Approximation methods in multiobjective programming. Journal of Optimization Theory and Applications 126(3), 473–501 (2005)MathSciNetCrossRefMATHGoogle Scholar
  63. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)MATHGoogle Scholar
  64. Sayin, S.: A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors. Operations Research 51, 427–436 (2003)MathSciNetCrossRefMATHGoogle Scholar
  65. Schandl, B., Klamroth, K., Wiecek, M.M.: Introducing oblique norms into multiple criteria programming. Journal of Global Optimization 23, 81–97 (2002a)MathSciNetCrossRefMATHGoogle Scholar
  66. Schandl, B., Klamroth, K., Wiecek, M.M.: Norm-based approximation in multicriteria programming. Computers and Mathematics with Applications 44, 925–942 (2002b)MathSciNetCrossRefMATHGoogle Scholar
  67. Schütze, O., Jourdan, L., Legrand, T., Talbi, E.-G., Wojkiewicz, J.L.: A multi-objective approach to the design of conducting polymer composites for electromagnetic shielding. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 590–603. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  68. Simon, H.: Reason in Human Affairs. Stanford University Press, Stanford (1983)Google Scholar
  69. Smirnov, M.: The logical convolution of the criterion vector in the problem of approximating Pareto set. Computational Mathematics and Mathematical Physics 36, 605–614 (1996)MathSciNetMATHGoogle Scholar
  70. Sobol, I.M., Statnikov, R.B.: Choice of Optimal Parameters in Multiobjective Problems (In Russian). Nauka Publishing House, Moscow (1981)MATHGoogle Scholar
  71. Solanki, R.S., Appino, P.A., Cohon, J.L.: Approximating the noninferior set in multiobjective linear programming problems. European Journal of Operational Research 68, 356–373 (1993)CrossRefMATHGoogle Scholar
  72. Statnikov, R.B., Matusov, J.: Multicriteria Optimization and Engineering. Chapman and Hall, Boca Raton (1995)CrossRefMATHGoogle Scholar
  73. Steuer, R.E., Harris, F.W.: Intra-set point generation and filtering in decision and criterion space. Computers & Operations Research 7, 41–58 (1980)CrossRefGoogle Scholar
  74. Suppaptnarm, A., Steffen, K.A., Parks, G.T., Clarkson, P.J.: Simulated annealing: An alternative approach to true multiobjective optimization. Engineering Optimization 33(1), 59–85 (2000)CrossRefGoogle Scholar
  75. Trinkaus, H.L., Hanne, T.: knowcube: a visual and interactive support for multicriteria decision making. Computers & Operations Research 32, 1289–1309 (2005)CrossRefMATHGoogle Scholar
  76. Vetschera, R.: A preference preserving projection technique for MCDM. European Journal of Operational Research 61(1–2), 195–203 (1992)CrossRefMATHGoogle Scholar
  77. Voinalovich, V.: External Approximation to the Pareto Set in Criterion Space for Multicriterion Linear Programming Tasks. Cybernetics and Computing Technology 1, 135–142 (1984)Google Scholar
  78. Wierzbicki, A.P.: On the role of intuition in decision making and some ways of multicriteria aid of intuition. Journal of Multi-Criteria Decision Analysis 6(2), 65–76 (1997)CrossRefMATHGoogle Scholar
  79. Wierzbicki, A.P., Nakamori, Y.: Creative Space. Springer, Berlin (2005)MATHGoogle Scholar
  80. Yu, P.L.: Cone convexity, cone extreme points and nondominated solutions in decision problems with multiple objectives. Journal of Optimization Theory and Applications 14(3), 319–377 (1974)MathSciNetCrossRefMATHGoogle Scholar
  81. Yu, P.L.: Multiple-Criteria Decision Making Concepts, Techniques and Extensions. Plenum Press, New York (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander V. Lotov
    • 1
  • Kaisa Miettinen
    • 2
  1. 1.Dorodnicyn Computing Centre of Russian Academy of SciencesMoscowRussia
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläFinland

Personalised recommendations