Future Challenges

  • Kaisa Miettinen
  • Kalyanmoy Deb
  • Johannes Jahn
  • Wlodzimierz Ogryczak
  • Koji Shimoyama
  • Rudolf Vetschera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5252)

Abstract

Many important topics in multiobjective optimization and decision making have been studied in this book so far. In this chapter, we wish to discuss some new trends and challenges which the field is facing. For brevity, we here concentrate on three main issues: new problem areas in which multiobjective optimization can be of use, new procedures and algorithms to make efficient and useful applications of multiobjective optimization tools and, finally, new interesting and practically usable optimality concepts. Some research has already been started and some such topics are also mentioned here to encourage further research. Some other topics are just ideas and deserve further attention in the near future.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aittokoski, T., Miettinen, K.: Cost effective simulation-based multiobjective optimization in performance of internal combustion engine. Engineering Optimization 40(7), 593–612 (2008)CrossRefGoogle Scholar
  2. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht (1998)CrossRefMATHGoogle Scholar
  3. Belton, V., Stewart, T.J.: Multiple Criteria Decision Analysis. Kluwer Academic Publishers, Dordrecht (2001)MATHGoogle Scholar
  4. Bingul, Z.: Adaptive genetic algorithms applied to dynamic multiobjective problems. Applied Soft Computing 7(3), 791–799 (2007), doi:10.1016/j.asoc.2006.03.001.CrossRefGoogle Scholar
  5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, Heidelberg (1997)MATHGoogle Scholar
  6. Blackmond, L.K., Fischer, G.W.: Estimating utility functions in the presence of response error. Management Science 33, 965–980 (1987)MathSciNetCrossRefGoogle Scholar
  7. Bleuler, S., Brack, M., Zitzler, E.: Multiobjective genetic programming: Reducing bloat using SPEA2. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 536–543. IEEE Computer Society Press, Piscataway (2001)Google Scholar
  8. Branke, J., Kauβler, T., Schmeck, H.: Guidance in evolutionary multi-objective optimization. Advances in Engineering Software 32, 499–507 (2001)CrossRefMATHGoogle Scholar
  9. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004a)CrossRefGoogle Scholar
  10. Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing multi-objective evolutionary algorithms: Cone separation. In: Proceedings of the Congress on Evolutionary Computation (CEC-2004), pp. 1952–1957. IEEE Press, Piscataway (2004b)Google Scholar
  11. Bui, L.T., Abbass, H.A., Essam, D.: Fitness inheritance for noisy evolutionary multi-objective optimization. In: Proceedings of the International Conference on Genetic and evolutionary computation (GECCO-2005), pp. 779–785. ACM Press, New York (2005)Google Scholar
  12. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)MATHGoogle Scholar
  13. Deb, K., Chaudhuri, S.: I-MODE: An interactive multi-objective optimization and decision-making using evolutionary methods. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 788–802. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. Deb, K., Gupta, H.: Searching for robust Pareto-optimal solutions in multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 150–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2007), pp. 781–788. ACM Press, New York (2007a)Google Scholar
  16. Deb, K., Kumar, A.: ’Light beam search’ based multi-objective optimization using evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Computation (CEC-2007), pp. 2125–2132. IEEE Computer Society Press, Piscataway (2007b)Google Scholar
  17. Deb, K., Srinivasan, A.: Innovization: Innovating design principles through optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 1629–1636. ACM Press, New York (2006)Google Scholar
  18. Deb, K., Zope, P., Jain, S.: Distributed computing of Pareto-optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. Deb, K., Sundar, J., Reddy, U., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research 2(6), 273–286 (2006)MathSciNetGoogle Scholar
  20. Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007a)CrossRefGoogle Scholar
  21. Deb, K., Padmanabhan, D., Gupta, S., Mall, A.K.: Reliability-based multi-objective optimization using evolutionary algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 66–80. Springer, Heidelberg (2007b)CrossRefGoogle Scholar
  22. Delattre, M., Hansen, P.: Bicriterion cluster analysis. IEEE Transaction Pattern Analysis and Machine Intelligence 2(4), 277–291 (1980)CrossRefMATHGoogle Scholar
  23. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  24. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333–359 (2003)MathSciNetCrossRefMATHGoogle Scholar
  25. Denda, R., Banchs, A., Effelsberg, W.: The fairness challenge in computer networks. In: Crowcroft, J., Roberts, J., Smirnov, M.I. (eds.) Quality of Future Internet Services, pp. 208–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. Engineous Software, Inc.: iSIGHT Reference Guide Version 7.1, pp. 220–233. Engineous Software, Inc. (2002)Google Scholar
  27. Eremeev, A.V., Reeves, C.R.: On confidence intervals for the number of local optima. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 224–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation 8(5), 425–442 (2000)CrossRefMATHGoogle Scholar
  29. Fliege, J.: The effects of adding objectives to an optimisation problem on the solution set. Operations Research Letters 35(6), 782–790 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms–Part I: A unified formulation. IEEE Transactions on Systems, Man and Cybernetics 28(1), 26–37 (1998)CrossRefGoogle Scholar
  31. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications 22(3), 618–630 (1968)MathSciNetCrossRefMATHGoogle Scholar
  32. Goel, A., Meyerson, A.: Simultaneous optimization via approximate majorization for concave profits or convex costs. Algorithmica 44, 301–323 (2006)MathSciNetCrossRefMATHGoogle Scholar
  33. Gupta, S., Rosenhead, J.: Robustness in sequential investment decisions. Management Science 15, 18–29 (1968)CrossRefGoogle Scholar
  34. Hakanen, J., Miettinen, K., Mäkelä, M., Manninen, J.: On interactive multiobjective optimization with NIMBUS in chemical process design. Journal of Multi-Criteria Decision Analysis 13(2–3), 125–134 (2005)CrossRefMATHGoogle Scholar
  35. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1), 56–76 (2007)CrossRefGoogle Scholar
  36. Handl, J., Kell, D.B., Knowles, J.: Multiobjective optimization in bioinformatics and computational biology. ACM/IEEE Transactions on Computational Biology and Bioinformatics 4(2), 279–292 (2007)CrossRefGoogle Scholar
  37. Hites, R., De Smet, Y., Risse, N., Salazar-Neumann, M., Vincke, P.: About the applicability of MCDA to some robustness problems. European Journal of Operational Research 174, 322–332 (2006)CrossRefMATHGoogle Scholar
  38. Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. Jahn, J.: Vector Optimization – Theory, Applications, and Extensions. Springer, Heidelberg (2004)MATHGoogle Scholar
  40. Jahn, J.: Introduction to the Theory on Nonlinear Optimization. Springer, Heidelberg (2007)MATHGoogle Scholar
  41. Jaszkiewicz, A., Słowiński, R.: The ‘light beam search’ approach – an overview of methodology and applications. European Journal of Operational Research 113, 300–314 (1999)CrossRefMATHGoogle Scholar
  42. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)MathSciNetCrossRefMATHGoogle Scholar
  43. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)CrossRefGoogle Scholar
  44. Jin, Y., Sendhoff, B.: Trade-off between performance and robustness: An evolutionary multiobjective approach. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 237–251. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  45. Kaliszewski, I.: Quantitative Pareto Analysis by Cone Separation Technique. Kluwer Academic Publishers, Dodrecht (1994)CrossRefMATHGoogle Scholar
  46. Klamroth, K., Miettinen, K.: Integrating approximation and interactive decision making in multicriteria optimization. Operations Research 56(1), 222–234 (2008)MathSciNetCrossRefMATHGoogle Scholar
  47. Knowles, J., Corne, D., Deb, K. (eds.): Multiobjective Problem Solving from Nature. Springer, Heidelberg (2008)MATHGoogle Scholar
  48. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  49. Korhonen, P.: A visual reference direction approach to solving discrete multiple criteria problems. European Journal of Operational Research 34, 152–159 (1988)CrossRefGoogle Scholar
  50. Kostreva, M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multiple criteria analysis. European Journal of Operational Research 158(2), 362–377 (2004)MathSciNetCrossRefMATHGoogle Scholar
  51. Kostreva, M.M., Ogryczak, W.: Linear optimization with multiple equitable criteria. RAIRO Operations Research 33, 275–297 (1999)MathSciNetCrossRefMATHGoogle Scholar
  52. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dodrecht (1997)CrossRefMATHGoogle Scholar
  53. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  54. Luss, H.: On equitable resource allocation problems: A lexicographic minimax approach. Operations Research 47, 361–378 (1999)CrossRefMATHGoogle Scholar
  55. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  56. Miettinen, K., Mäkelä, M.M.: Interactive multiobjective optimization system WWW-NIMBUS on the Internet. Computers & Operations Research 27(7–8), 709–723 (2000)CrossRefMATHGoogle Scholar
  57. Miettinen, K., Mäkelä, M.M.: Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research 170, 909–922 (2006)CrossRefMATHGoogle Scholar
  58. Miettinen, K., Mäkelä, M.M., Männikkö, T.: Optimal control of continuous casting by nondifferentiable multiobjective optimization. Computational Optimization and Applications 11(2), 177–194 (1998)MathSciNetCrossRefMATHGoogle Scholar
  59. Miettinen, K., Lotov, A.V., Kamenev, G.K., Berezkin, V.E.: Integration of two multiobjective optimization methods for nonlinear problems. Optimization Methods and Software 18, 63–80 (2003)MathSciNetCrossRefMATHGoogle Scholar
  60. Miettinen, K., Mäkelä, M.M., Maaranen, H.: Efficient hybrid methods for global continuous optimization based on simulated annealing. Computers & Operations Research 33(4), 1102–1116 (2006)MathSciNetCrossRefMATHGoogle Scholar
  61. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005), pp. 763–769. ACM Press, New York (2005)CrossRefGoogle Scholar
  62. Ogryczak, W.: On the distribution approach to location problems. Computers & Industrial Engineering 37, 595–612 (1999)CrossRefGoogle Scholar
  63. Ogryczak, W.: Multiple criteria optimization and decisions under risk. Control and Cybernetics 31, 975–1003 (2002)MATHGoogle Scholar
  64. Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: Semideviations as risk measures. European Journal of Operational Research 116, 33–50 (1999)CrossRefMATHGoogle Scholar
  65. Ogryczak, W., Wierzbicki, A., Milewski, M.: A multi-criteria approach to fair and efficient bandwidth allocation. Omega 36, 451–463 (2008)CrossRefGoogle Scholar
  66. Olson, D.: Decision Aids for Selection Problems. Springer, New York (1996)CrossRefGoogle Scholar
  67. Palaniappan, S., Zein-Sabatto, S., Sekmen, A.: Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms. In: Proceedings of the IEEE Southeast Conference, pp. 160–165. Clemson University, Clemson, SC (2001)Google Scholar
  68. Parmee, I.C., Cevtković, D., Watson, A.W., Bonham, C.R.: Multiobjective satisfaction within an interactive evolutionary design enviornment. Evolutionary Computation Journal 8(2), 197–222 (2000)CrossRefGoogle Scholar
  69. Perny, P., Spanjaard, O., Storme, L.-X.: A decision-theoretic approach to robust optimization in multivalued graphs. Annals of Operations Research 147, 317–341 (2006)MathSciNetCrossRefMATHGoogle Scholar
  70. Pióro, M., Medhi, D.: Routing, Flow and Capacity Design in Communication and Computer Networks. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  71. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Operations Research 54, 201–216 (2006)MathSciNetCrossRefMATHGoogle Scholar
  72. Roy, B.: A missing link in OR-DA: Robustness analysis. Foundations of Computing and Decision Sciences 23, 141–160 (1998)MATHGoogle Scholar
  73. San Miguel, F., Ryan, M., Scott, A.: Are preferences stable? The case of health care. Journal of Economic Behavior and Organization 48, 1–14 (2002)CrossRefGoogle Scholar
  74. Shimoyama, K., Oyama, A., Fujii, K.: A new efficient and useful robust optimization approach – design for multi-objective six sigma. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 950–957. IEEE Computer Society Press, Piscataway (2005)Google Scholar
  75. Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  76. Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based interactive evolutionary algorithm for multiobjective optimization. Working Papers W-412, Helsinki School of Economics, Helsinki (2007)Google Scholar
  77. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Berlin (1934)Google Scholar
  78. von Winterfeldt, D., Edwards, W.: Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge (1986)Google Scholar
  79. Wierzbicki, A.: On completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum 8, 73–87 (1986)MathSciNetCrossRefMATHGoogle Scholar
  80. Yu, P.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiple objectives. Journal of Optimization Theory and Applications 14, 319–377 (1974)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kaisa Miettinen
    • 1
  • Kalyanmoy Deb
    • 2
  • Johannes Jahn
    • 3
  • Wlodzimierz Ogryczak
    • 4
  • Koji Shimoyama
    • 5
  • Rudolf Vetschera
    • 6
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläFinland
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology KanpurIndia
  3. 3.Department of MathematicsUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Institute of Control & Computation Engineering, Faculty of Electronics & Information TechnologyWarsaw University of TechnologyWarsawPoland
  5. 5.Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan
  6. 6.Department of Business AdministrationUniversity of ViennaWienAustria

Personalised recommendations