Equivalence of XSD Constructs and Its Exploitation in Similarity Evaluation

  • Irena Mlýnková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5332)


In this paper we propose a technique for evaluating similarity of XML Schema fragments. Firstly, we define classes of structurally and semantically equivalent XSD constructs. Then we propose a similarity measure that is based on the idea of edit distance utilized to XSD constructs and enables one to involve various additional similarity aspects. In particular, we exploit the equivalence classes and semantic similarity of element/attribute names. Using preliminary experiments we show the behavior and advantages of the proposal.


Semantic Similarity Edit Distance Edit Operation Source Tree Canonical Representative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertino, E., Guerrini, G., Mesiti, M.: A Matching Algorithm for Measuring the Structural Similarity between an XML Document and a DTD and its Applications. Inf. Syst. 29(1), 23–46 (2004)CrossRefGoogle Scholar
  2. 2.
    Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes, 2nd edn. W3C (2004)Google Scholar
  3. 3.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0, 4th edn. W3C (2006)Google Scholar
  4. 4.
    Do, H.H., Rahm, E.: COMA – A System for Flexible Combination of Schema Matching Approaches. In: VLDB 2002: Proc. of the 28th Int. Conf. on Very Large Data Bases, Hong Kong, China, pp. 610–621. Morgan Kaufmann, San Francisco (2002)CrossRefGoogle Scholar
  5. 5.
    Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: Clustering XML Schemas for Effective Integration. In: CIKM 2002: Proc. of the 11th Int. Conf. on Information and Knowledge Management, New York, NY, USA, pp. 292–299. ACM, New York (2002)Google Scholar
  6. 6.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Mlynkova, I., Toman, K., Pokorny, J.: Statistical Analysis of Real XML Data Collections. In: COMAD 2006: Proc. of the 13th Int. Conf. on Management of Data, New Delhi, India, pp. 20–31. Tata McGraw-Hill Publishing, New York (2006)Google Scholar
  8. 8.
    Ng, P.K.L., Ng, V.T.Y.: Structural Similarity between XML Documents and DTDs. In: ICCS 2003: Proc. of the Int. Conf. on Computational Science, pp. 412–421. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents. In: WebDB 2002: Proc. of the 5th Int. Workshop on the Web and Databases, Madison, Wisconsin, USA, pp. 61–66 (2002)Google Scholar
  10. 10.
    Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.: Relational Databases for Querying XML Documents: Limitations and Opportunities. In: VLDB 1999: Proc. of 25th Int. Conf. on Very Large Data Bases, pp. 302–314. Morgan Kaufmann, San Francisco (1999)Google Scholar
  11. 11.
    Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1: Structures, 2nd edn. W3C (2004)Google Scholar
  12. 12.
    Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity Metric for XML Documents. In: FGWM 2003: Proc. of Workshop on Knowledge and Experience Management, Karlsruhe, Germany (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Irena Mlýnková
    • 1
  1. 1.Department of Software EngineeringCharles UniversityPrague 1Czech Republic

Personalised recommendations