Advertisement

Reality-and-Desire in Ciliates

  • Robert Brijder
  • Hendrik Jan Hoogeboom
Chapter
Part of the Natural Computing Series book series (NCS)

Abstract

The theory of gene assembly in ciliates has a number of similarities with the theory of sorting by reversal. Both theories model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper, we show how the concept of breakpoint graph, known from the theory of sorting by reversal, can be used in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

Keywords

Gene Assembly Reduction Rule Successful Reduction Reduction Graph Reality Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergeron A, Mixtacki J, Stoye J (2005) On sorting by translocations. In: Miyano S et al. (eds) RECOMB. Lecture notes in computer science, vol 3500. Springer, Berlin, pp 615–629 Google Scholar
  2. 2.
    Brijder R, Hoogeboom HJ (2008) The fibers and range of reduction graphs in ciliates. Acta Inform 45:383–402. doi: 10.1007/s00236-008-0074-3 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brijder R, Hoogeboom HJ, Muskulus M (2008) Strategies of loop recombination in ciliates. Discrete Appl Math 156:1736–1753. doi: 10.1016/j.dam.2007.08.032 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brijder R, Hoogeboom HJ, Rozenberg G (2006) Reducibility of gene patterns in ciliates using the breakpoint graph. Theor Comput Sci 356:26–45 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cavalcanti ARO, Clarke TH, Landweber LF (2005) MDS_IES_DB: a database of macronuclear and micronuclear genes in spirotrichous ciliates. Nucleic Acids Res 33:D396–D398 CrossRefGoogle Scholar
  6. 6.
    Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2003) Formal systems for gene assembly in ciliates. Theor Comput Sci 292:199–219 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2004) Computation in living cells—gene assembly in ciliates. Springer, Berlin MATHGoogle Scholar
  8. 8.
    Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J ACM 46(1):1–27 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Harju T, Li C, Petre I, Rozenberg G (2006) Parallelism in gene assembly. Nat Comput 5(2):203–223 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Landweber LF, Kari L (1999) The evolution of cellular computing: nature’s solution to a computational problem. Biosystems 52:2–13 CrossRefGoogle Scholar
  11. 11.
    Pevzner PA (2000) Computational molecular biology: an algorithmic approach. MIT Press, Cambridge MATHGoogle Scholar
  12. 12.
    Prescott DM, DuBois M (1996) Internal eliminated segments (IESs) of oxytrichidae. J Euk Microbiol 43:432–441 CrossRefGoogle Scholar
  13. 13.
    Setubal JC, Meidanis J (1997) Introduction to computational molecular biology. PWS, Boston Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations