Algorithmic Bioprocesses pp 585-605

Part of the Natural Computing Series book series (NCS) | Cite as

Log-gain Principles for Metabolic P Systems

Chapter

Abstract

Metabolic P systems, shortly MP systems, are a special class of P systems, introduced for expressing biological metabolism. Their dynamics are computed by metabolic algorithms which transform populations of objects according to a mass partition principle, based on suitable generalizations of chemical laws. In this paper, the basic principles of MP systems are formulated for introducing the Log-gain principles, and it is shown how to use them for constructing MP models from experimental data of given metabolic processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini F, Manca V (2003) Dynamical aspects of P systems. Biosystems 70:85–93 CrossRefGoogle Scholar
  2. 2.
    von Bertalanffy L (1967) General systems theory: foundations, developments, applications. George Braziller Inc, New York Google Scholar
  3. 3.
    Besozzi D, Ciobanu G (2005) A P system description of the sodium-potassium pump. In: Mauri G, Păun G, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2004. Lecture notes in computer science, vol 3365. Springer, Berlin, pp 210–223 Google Scholar
  4. 4.
    Bianco L (2007) Membrane models of biological systems. PhD thesis, University of Verona Google Scholar
  5. 5.
    Bianco L, Fontana F, Franco G, Manca V (2006) P systems for biological dynamics. In: Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) Applications of membrane computing. Springer, Berlin, pp 81–126 Google Scholar
  6. 6.
    Bianco L, Fontana F, Manca V (2005) Reaction-driven membrane systems. In: Wang L, Chen K, Ong Y-S (eds) Advances in natural computation. Lecture notes in computer science, vol 3611. Springer, Berlin, pp 1155–1158 Google Scholar
  7. 7.
    Bianco L, Fontana F, Manca V (2006) P systems with reaction maps. Int J Found Comput Sci 17(1):27–48 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bianco L, Manca V, Marchetti L, Petterlini M (2007) Psim: a simulator for biomolecular dynamics based on P systems. In: IEEE congress on evolutionary computation (CEC 2007), pp. 883–887 Google Scholar
  9. 9.
    Bianco L, Pescini D, Siepmann P, Krasnogor N, Romero-Campero FJ, Gheorghe M (2007) Towards a P systems pseudomonas quorum sensing model. In: Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 197–214 CrossRefGoogle Scholar
  10. 10.
    Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) (2006) Applications of membrane computing. Springer, Berlin Google Scholar
  11. 11.
    Castellini A, Franco G, Manca V (2007) Toward a representation of hybrid functional Petri nets by MP systems. In: Suzuki, Y., Păun, G., Adamatzky, A., Hagiya, M., Umeo, H. (eds) Natural computing, 2nd international workshop on natural computing, IWNC University of Nagoya, Japan, pp 28–37 Google Scholar
  12. 12.
    Ehrenfeucht A, Rozenberg G (2004) Basic notions of reaction systems. In: Lecture notes in computer science, vol 3340. Springer, Berlin, pp 27–29 Google Scholar
  13. 13.
    Ehrenfeucht A, Rozenberg G (2006) Reaction systems. Fund Inform 76:1–18 Google Scholar
  14. 14.
    Ehrenfeucht A, Rozenberg G (2007) Events and modules in reaction systems. Theor Comput Sci 376:3–16 MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fontana F, Bianco L, Manca V (2005) P systems and the modeling of biochemical oscillations. In: Freund R, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2005. Lecture notes in computer science, vol 3850. Springer, Berlin, pp 199–208 CrossRefGoogle Scholar
  16. 16.
    Fontana F, Manca V (2008) Predator-prey dynamics in P systems ruled by metabolic algorithm. Biosystems 91(3):545–557 CrossRefGoogle Scholar
  17. 17.
    Fontana F, Manca V (2007) Discrete solutions to differential equations by metabolic P systems. Theor Comput Sci 372:165–182 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Franco G, Manca V (2004) A membrane system for the leukocyte selective recruitment. In: Alhazov A, Martín-Vide C, Păun G (eds) Membrane computing, WMC 2003. Lecture notes in computer science, vol 2933. Springer, Berlin, pp 180–189 Google Scholar
  19. 19.
    Franco G, Guzzi PH, Mazza T, Manca V (2007) Mitotic oscillators as MP graphs. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 382–394 CrossRefGoogle Scholar
  20. 20.
    Franco G, Jonoska N, Osborn B, Plaas A (2008) Knee joint injury and repair modeled by membrane systems. Biosystems 91(3):473–488 CrossRefGoogle Scholar
  21. 21.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361 CrossRefGoogle Scholar
  22. 22.
    Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci 88(20):9107–9111 CrossRefGoogle Scholar
  23. 23.
    Goldbeter A (2004) Biochemical oscillations and cellular rhythms. Cambridge University Press, New York Google Scholar
  24. 24.
    Jost J (2005) Dynamical systems. Springer, Berlin MATHGoogle Scholar
  25. 25.
    Kurka P (2003) Topological and symbolic dynamics. Société Mathématique de France, Paris MATHGoogle Scholar
  26. 26.
    Manca V (1998) String rewriting and metabolism: a logical perspective. In: Păun G (ed) Computing with bio-molecules. Springer, Berlin, pp 36–60 Google Scholar
  27. 27.
    Manca V (2006) Topics and problems in metabolic P systems. In: Păun G, Pérez-Jiménez MJ (eds) Membrane computing, BWMC4. Fenix Editora, Sevilla, pp 173–183 Google Scholar
  28. 28.
    Manca V (2006) MP systems approaches to biochemical dynamics: Biological rhythms and oscillations. In: Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2006. Lecture notes in computer science, vol 4361. Springer, Berlin, pp 86–99 CrossRefGoogle Scholar
  29. 29.
    Manca V (2007) Metabolic P systems for biochemical dynamics. Prog Nat Sci 17(4):384–391 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Manca V (2008) Discrete simulations of biochemical dynamics. In: Garzon MH (ed) DNA 13. Lecture notes in computer science, vol 4848. Springer, Berlin, pp 231–235 Google Scholar
  31. 31.
    Manca V (2008) The metabolic algorithm: principles and applications. Theor Comput Sci 404:142–157 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Manca V, Bianco L (2008) Biological networks in metabolic P systems. Biosystems 91(3):489–498 CrossRefGoogle Scholar
  33. 33.
    Manca V, Bianco L, Fontana F (2005) Evolutions and oscillations of P systems: Applications to biological phenomena. In: Mauri G, Păun G, Pérez-Jiménez MJ, Rozenberg G, Salomaa A (eds) Membrane computing, WMC 2004. Lecture notes in computer science, vol 3365. Springer, Berlin, pp 63–84 Google Scholar
  34. 34.
    Manca V, Franco G, Scollo G (2005) State transition dynamics: basic concepts and molecular computing perspectives. In: Gheorghe M (ed) Molecular computational models: unconventional approachers. Idea Group Inc, UK, Chap. 2, pp 32–55 Google Scholar
  35. 35.
    Manca V, Martino DM (1999) From string rewriting to logical metabolic systems. In: Păun G, Salomaa A (eds) Grammatical models of multi-agent systems. Gordon and Breach, London Google Scholar
  36. 36.
    Pagliarini R (2007) Esperimenti per la determinazione computazionale dei parametri regolativi nei P sistemi metabolici. Master thesis, University of Verona Google Scholar
  37. 37.
    Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143 MATHCrossRefGoogle Scholar
  38. 38.
    Păun G (2002) Membrane computing. An introduction. Springer, Berlin MATHGoogle Scholar
  39. 39.
    Scollo G, Franco G, Manca V (2006) A relational view of recurrence and attractors in state transition dynamics. In: Schmidt R (ed) Relations and 25 kleene algebra in computer science. Lecture notes in computer science, vol 4136. Springer, Berlin, pp 358–372 CrossRefGoogle Scholar
  40. 40.
    Scollo G, Franco G, Manca V (2008) Relational state transition dynamics. J Log Algebr Program 76:130–144 MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Pérez–Jiménez MJ, Romero-Campero FJ (2005) A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Mira J, Alvarez JR (eds) Mechanisms, symbols, and models underlying cognition, IWINAC 2005. Lecture notes in computer science, vol 3561. Springer, Berlin, pp 268–278 Google Scholar
  42. 42.
    Pescini D, Besozzi D, Mauri G, Zandron C (2006) Dynamical probabilistic P systems. Int J Found Comput Sci 17(1):183–204 MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Suzuki Y, Fujiwara Y, Tanaka H, Takabayashi J (2001) Artificial life applications of a class of P systems: abstract rewriting systems on multisets. In: Calude CS, Păun G, Rozenberg G, Salomaa A (eds) Multiset processing, mathematical, computer science, and molecular computing points of view. Lecture notes in computer science, vol 2235. Springer, Berlin, pp 299–346 Google Scholar
  44. 44.
    Suzuki Y, Tanaka H (2002) A symbolic chemical system based on an abstract rewriting system and its behavior pattern. J Artif Life Robot 6:129–132 CrossRefGoogle Scholar
  45. 45.
    Suzuki Y, Tanaka H (2006) Modelling p53 signaling pathways by using multiset processing. In: Ciobanu G, Păun G, Pérez-Jiménez MJ (eds) Applications of membrane computing. Springer, Berlin, pp 203–214 Google Scholar
  46. 46.
    Voit EO (2000) Computational analysis of biochemical systems. Cambridge University Press, Cambridge Google Scholar
  47. 47.
    The P systems web page. http://ppage.psystems.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceVeronaItaly

Personalised recommendations