Process Calculi Abstractions for Biology

  • Maria Luisa Guerriero
  • Davide Prandi
  • Corrado Priami
  • Paola Quaglia
Chapter
Part of the Natural Computing Series book series (NCS)

Abstract

Several approaches have been proposed to model biological systems by means of the formal techniques and tools available in computer science. To mention just a few of them, some representations are inspired by Petri nets theory and others by stochastic processes.

A most recent approach consists in interpreting living entities as terms of process calculi, by composition of a few behavioural abstractions. This paper comparatively surveys the state of the art of the process calculi approach to biological modelling.

The modelling features of a set of calculi are tested against a simple biological scenario, and available extensions and tools are briefly commented upon.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu T, Miyano S, Kuhara S (2000) Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. J Comput Biol 7(3):331–343 CrossRefGoogle Scholar
  2. 2.
    Alves R, Savageau MA (2000) Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16(9):786–798 CrossRefGoogle Scholar
  3. 3.
    Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW (2001) BIND—the biomolecular interaction network database. Nucleic Acids Res 29(1):242–245 CrossRefGoogle Scholar
  4. 4.
    van Bakel S, Kahn I, Vigliotti M, Heath J (2007) Modelling intarcellular fate of FGF receptors with BioAmbients. In: ENTCS Google Scholar
  5. 5.
    Baldan P, Bracciali A, Brodo L, Bruni R (2007) Deducing interactions in partially unspecified biological systems. In: Proceedings of the second international conference on algebraic biology (AB 2007). Lecture notes in computer science, vol 4545. Springer, Berlin, pp 262–276 Google Scholar
  6. 6.
    The Beta workbench home page. http://www.cosbi.eu/Rpty_Soft_BetaWB.php
  7. 7.
  8. 8.
    Busi N (2007) Towards a causal semantics for brane calculi. In: Proceedings of the fifth brainstorming week on membrane computing, pp 97–111 Google Scholar
  9. 9.
    Busi N, Zandron C (2006) Modeling and analysis of biological processes by mem(brane) calculi and systems. In: Proceedings of the winter simulation conference (WSC 2006), Monterey, CA, USA, December 3–6, 2006. WSC, Monterey, pp 1646–1655 CrossRefGoogle Scholar
  10. 10.
    Calder M, Gilmore S, Hillston J (2005) Automatically deriving ODEs from process algebra models of signalling pathways. In: Plotkin G (ed) Proceedings of computational methods in systems biology (CMSB 2005), Edinburgh, Scotland, pp 204–215 Google Scholar
  11. 11.
    Calder M, Gilmore S, Hillston J (2006) Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Trans Comput Syst Biol VII(4230):1–23; also appeared in: Proc BioCONCUR’04 MathSciNetGoogle Scholar
  12. 12.
    Calder M, Gilmore S, Hillston J, Vyshemirsky V (2009) Formal methods for biochemical signalling pathways. In: Formal methods: state of art and new directions, BCS FACS. Springer, Berlin (in press) Google Scholar
  13. 13.
    Calder M, Vyshemirsky V, Orton R, Gilbert D (2005) Analysis of signalling pathways using the PRISM model checker. In: Plotkin G (ed) Third international workshop on computational methods in systems biology (CMSB’05) Google Scholar
  14. 14.
    Cardelli L (2005) Brane calculi—interactions of biological membranes. In: Computational methods in systems biology, international conference CMSB 2004, revised selected papers, Paris, France, May 26–28, 2004. Lecture notes in computer science, vol 3082. Springer, Berlin, pp 257–278 Google Scholar
  15. 15.
    Cardelli L, Gardner P, Kahramanoğulları O (2008) A process model of rho GTP-binding proteins in the context of phagocytosis. In: Proc. of FBTC’07. Electron Notes Theor Comput Sci 194(3):87–102 CrossRefGoogle Scholar
  16. 16.
    Chang R (2005) Physical chemistry for the biosciences. University Science Google Scholar
  17. 17.
    Chiarugi D, Degano P, Marangoni R (2007) A computational approach to the functional screening of genomes. PLoS Comput Biol 3(9):1801–1806 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ciocchetta F, Hillston J (2007) Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. In: From biology to concurrency and back (FBTC 07), ENTCS Google Scholar
  19. 19.
    Curti M, Degano P, Priami C, Baldari C (2004) Modelling biochemical pathways through enhanced π-calculus. Theor Comput Sci 325(1):111–140 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. In: Proceedings CONCUR’07. Lecture notes in computer science. Springer, Berlin Google Scholar
  21. 21.
    Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling networks. In: Proceedings APLAS’07 Google Scholar
  22. 22.
    Danos V, Feret J, Fontana W, Krivine J (2008) Abstract interpretation of reachable complexes in biological signalling networks. In: Proceedings VMCAI’08. Lecture notes in computer science. Springer, Berlin Google Scholar
  23. 23.
    Danos V, Fontana W, Harmer R, Krivine J (2007) Biological signalling and causality Google Scholar
  24. 24.
    Danos V, Krivine J (2004) Reversible communicating systems. In: Proceedings CONCUR’04. Lecture notes in computer science, vol 3170. Springer, Berlin, pp 292–307 Google Scholar
  25. 25.
    Danos V, Krivine J (2007) Formal molecular biology done in CCS-R. Electron Notes Theor Comput Sci 180(3):31–49 CrossRefGoogle Scholar
  26. 26.
    Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325(1) Google Scholar
  27. 27.
    Danos V, Pradalier S (2005) Projective brane calculus. In: Computational methods in systems biology, international conference CMSB 2004, revised selected papers, Paris, France, May 26–28, 2004. Lecture notes in computer science, vol 3082. Springer, Berlin, pp 134–148 Google Scholar
  28. 28.
    Degano P, Prandi D, Priami C, Quaglia P (2006) Beta-binders for biological quantitative experiments. Electron Notes Theor Comput Sci 164(3):101–117 CrossRefGoogle Scholar
  29. 29.
    Dematte L, Prandi D, Priami C, Romanel A (2007) Effective index: a formal measure of drug effects. In: Proceedings FOSBE 2007, pp 485–490 Google Scholar
  30. 30.
    Dhaeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726 CrossRefGoogle Scholar
  31. 31.
    Efroni S, Harel D, Cohen IR (2003) Towards rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation Genome Res 13(11):2485–2497 CrossRefGoogle Scholar
  32. 32.
    Fontana W, Buss L (1996) The barrier of objects: from dynamical systems to bounded organizations. In: Boundaries and barriers: on the limits to scientific knowledge. Addison–Wesley, Reading Google Scholar
  33. 33.
    Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361 CrossRefGoogle Scholar
  34. 34.
    Gilmore S, Hillston J (1994) The PEPA workbench: a tool to support a process algebra-based approach to performance modelling. In: Proceedings of the seventh international conference on modelling techniques and tools for computer performance evaluation. Lecture notes in computer science, vol 794. Springer, Vienna, pp 353–368 Google Scholar
  35. 35.
    Guerriero M, Priami C, Romanel A (2007) Beta-binders with static compartments. In: Proceedings of the second international conference on algebraic biology (AB07). Lecture notes in computer science. Springer, Berlin Google Scholar
  36. 36.
    Guerriero ML, Priami C (2006) Causality and concurrency in beta-binders. Cosbi Technical Report TR-01-2006. Available at http://www.cosbi.eu/templates/cosbi/php/get_paper.php?id=1
  37. 37.
    Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O (2008) Probabilistic model checking of complex biological pathways. Theor Comput Sci 319:239–257 CrossRefMathSciNetGoogle Scholar
  38. 38.
    van Helden J, Naim A, Mancuso R, Eldridge M, Wernisch L, D DG, Wodak S (2000) Representing and analysing molecular and cellular function using the computer. Biol Chem 381(9–10):921–935 CrossRefGoogle Scholar
  39. 39.
    Hillston J (1996) A compositional approach to performance modelling. Cambridge University Press, Cambridge Google Scholar
  40. 40.
    Hoare CAR (1985) Communicating sequential processes. Prentice–Hall, New York MATHGoogle Scholar
  41. 41.
    Kam N, Harel D, Kugler H, Marelly R, Pnueli A, Hubbard EJA, Stern MJ (2003) Formal modeling of C. elegans development: a scenario-based approach. In: Computational methods in systems biology, proceedings of the first international workshop, CMSB 2003, Roverto, Italy, February 24–26, 2003. Lecture notes in computer science, vol 2602. Springer, Berlin Google Scholar
  42. 42.
  43. 43.
    Karp PD, Riley M, Saier M, Paulsen I, Collado-Vides J, Paley S, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The EcoCyc database. Nucleic Acids Res 30(1):56–58 CrossRefGoogle Scholar
  44. 44.
    Kazic T (2000) Semiotes: a semantics for sharing. Bioinformatics 16(12):1129–1144 CrossRefGoogle Scholar
  45. 45.
    Koshland D (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98–104 CrossRefGoogle Scholar
  46. 46.
    Kuttler C, Lhoussaine C, Niehren C (2007) A stochastic pi calculus for concurrent objects. In: Algebraic biology, second international conference, AB 2007, Castle of Hagenberg, Austria, July 2–4, 2007. Lecture notes in computer science, vol 4545. Springer, Berlin, pp 232–246 Google Scholar
  47. 47.
    Kuttler C, Niehren J (2006) Gene regulation in the pi calculus: simulating cooperativity at the lambda switch. Trans Comput Syst Biol VII(4230):24–55 MathSciNetGoogle Scholar
  48. 48.
    Kwiatkowska M, Norman G, Parker D (2002) PRISM: probabilistic symbolic model checker. In: Proceedings TOOLS 2002. Lecture notes in computer science, vol 2324. Springer, Berlin, pp 200–204 Google Scholar
  49. 49.
    Laneve C, Tarissan F (2007) A simple calculus for proteins and cells. Electron Notes Theor Comput Sci 171:139–154 CrossRefGoogle Scholar
  50. 50.
    Lecca P, Priami C (2007) Cell cycle control in eukaryotes: a biospi model. Electron Notes Theor Comput Sci 180(3):51–63 CrossRefGoogle Scholar
  51. 51.
    Lecca P, Priami C, Quaglia P, Rossi B, Laudanna C, Costantin G (2004) A stochastic process algebra approach to simulation of autoreactive lymphocyte recruitment. SIMULATION: Trans Soc Mod Simul Int 80(6):273–288 CrossRefGoogle Scholar
  52. 52.
    Leye S, Priami C, Uhrmacher A (2007) A parallel beta-binders simulator. Tech Rep TR-17-2007, The Microsoft Research, University of Trento CoSBi Google Scholar
  53. 53.
    Miculan M, Bacci G (2006) Modal logics for brane calculus. In: Proceedings of the computational methods in systems biology, international conference (CMSB 2006). Lecture notes in computer science, vol 4210. Springer, Berlin, pp 1–16 Google Scholar
  54. 54.
    Milner R (1989) Communication and concurrency. Prentice–Hall, New York MATHGoogle Scholar
  55. 55.
    Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge Google Scholar
  56. 56.
    Möbius home page. http://www.mobius.uiuc.edu/
  57. 57.
    Nielson F, Nielson H, Priami C, Rosa D (2007) Control flow analysis for BioAmbients. Electron Notes Theor Comput Sci 180(3):65–79 CrossRefGoogle Scholar
  58. 58.
    Nielson HR, Nielson F, Pilegaard H (2004) Spatial analysis of bioambients. In: Giacobazzi R (ed) Proceedings of the static analysis, 11th international symposium (SAS’04). Lecture notes in computer science, vol 3148. Springer, Berlin, pp 69–83 Google Scholar
  59. 59.
    Păun G (2002) Membrane computing. An introduction. Springer, Berlin MATHGoogle Scholar
  60. 60.
    Peleg M, Yeh I, Altman R (2002) Modeling biological processes using workflow and Petri net models. Bioinformatics 18:825–837 CrossRefGoogle Scholar
  61. 61.
    The PEPA plug-in project. http://www.dcs.ed.ac.uk/pepa/tools/plugin/
  62. 62.
    Phillips A, Cardelli L (2004) A correct abstract machine for the stochastic pi-calculus. In: BioConcur ’04, workshop on concurrent models in molecular biology Google Scholar
  63. 63.
    Phillips A, Cardelli L, Castagna G (2006) A graphical representation for biological processes in the stochastic pi-calculus. Trans Comput Syst Biol 4230:123–152 MathSciNetGoogle Scholar
  64. 64.
    Pilegaard H, Nielson F, Nielson HR (2005) Static analysis of a model of the LDL degradation pathway. In: Plotkin G (ed) Third international workshop on computational methods in systems biology (CMSB’05) Google Scholar
  65. 65.
    Plotkin GD (2004) A structural approach to operational semantics. J Log Algebr Program 60–61:17–139 MathSciNetGoogle Scholar
  66. 66.
    Prandi D, Priami C, Quaglia P (2006) Shape spaces in formal interactions. ComPlexUS 2(3–4):128–139 Google Scholar
  67. 67.
    Priami C, Quaglia P (2005) Beta binders for biological interactions. In: Danos V, Schächter V (eds) Proceedings of the 2nd international workshop on computational methods in systems biology (CMSB ’04). Lecture notes in bioinformatics, vol 3082. Springer, Berlin, pp 21–34 Google Scholar
  68. 68.
    Priami C, Regev A, Silverman W, Shapiro E (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf Process Lett 80(1):25–31 MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Regev A, Panina EM, Silverman W, Cardelli L, Shapiro EY (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325(1):141–167 MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Regev A, Shapiro E (2002) Cells as computation. Nature 419:343 CrossRefGoogle Scholar
  71. 71.
    Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the π-calculus process algebra. In: Proceedings of pacific symposium on biocomputing (PSB’01), vol 6, pp 459–470 Google Scholar
  72. 72.
    Romanel A, Dematté L, Priami C (2007) The beta workbench. Tech rep TR-03-2007, The Microsoft Research, University of Trento CoSBi Google Scholar
  73. 73.
    Sangiorgi D, Walker D (2001) The π-calculus: a theory of mobile processes. Cambridge University Press, Cambridge Google Scholar
  74. 74.
    Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the systems biology workbench and biospice integration. OMICS: J Integr Biol 7(4):355–372 CrossRefGoogle Scholar
  75. 75.
    Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18(3):326–332 CrossRefGoogle Scholar
  76. 76.
  77. 77.
    Stenesh J (1998) Biochemistry. Springer, Berlin Google Scholar
  78. 78.
    Szallasi Z (1999) Genetic network analysis in light of massively parallel biological data. In: Altman R, Dunker A, Hunter L, Klein T (eds) Pacific symposium on biocomputing, vol 4. World Scientific, Singapore, pp 5–16 Google Scholar
  79. 79.
    Versari C, Busi N (2007) Efficient stochastic simulation of biological systems with multiple variable volumes. In: Proceedings FBTC 07 Google Scholar
  80. 80.
    Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, M MK, Matys V, Michael H, Ohnhauser R, Pruss M, Schacherer F, Thiele S, Urbach S (2001) The TRANSFAC system on gene expression regulation. Nucleic Acids Res 29(1):281–283 CrossRefGoogle Scholar
  81. 81.
    Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maria Luisa Guerriero
    • 1
  • Davide Prandi
    • 2
  • Corrado Priami
    • 3
    • 4
  • Paola Quaglia
    • 3
  1. 1.Laboratory for Foundations of Computer ScienceThe University of EdinburghEdinburghUK
  2. 2.Dipartimento di Medicina Sperimentale e ClinicaUniversità “Magna Graecia” di CatanzaroCatanzaroItaly
  3. 3.Dipartimento di Ingegneria e Scienza dell’InformazioneUniversità di TrentoTrentoItaly
  4. 4.The Microsoft ResearchUniversity of Trento Centre for Computational and Systems BiologyTrentoItaly

Personalised recommendations