Understanding Network Behavior by Structured Representations of Transition Invariants

  • Monika HeinerEmail author
Part of the Natural Computing Series book series (NCS)


Petri nets offer a bipartite and concurrent paradigm, and consequently represent a natural choice for modeling and analyzing biochemical networks. We introduce a Petri net structuring technique contributing to a better understanding of the network behavior and requiring static analysis only. We determine a classification of the transitions into abstract dependent transition sets, which induce connected subnets overlapping in interface places only. This classification allows a structured representation of the transition invariants by network coarsening. The whole approach is algorithmically defined, and thus does not involve human interaction. This structuring technique is especially helpful for analyzing biochemically interpreted Petri nets, where it supports model validation of biochemical reaction systems reflecting current comprehension and assumptions of what has been designed by natural evolution.


Synthetic Biology Incidence Matrix Biochemical Network System Biology Markup Language Signal Transduction Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bause F, Kritzinger PS (2002) Stochastic Petri nets. Vieweg, Wiesbaden zbMATHGoogle Scholar
  2. 2.
    Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219 CrossRefGoogle Scholar
  3. 3.
    Charlie Website (2008) A tool for the analysis of place/transition nets. BTU Cottbus.
  4. 4.
    Christensen S, Petrucci L (2000) Modular analysis of Petri nets. Comput J 43(3):224–242 zbMATHCrossRefGoogle Scholar
  5. 5.
    Colom JM, Silva M (1991) Convex geometry and semiflows in P/T nets. In: A comparative study of algorithms for computation of minimal P-semiflows. LNCS, vol 483. Springer, Berlin, pp 79–112 Google Scholar
  6. 6.
    David R, Alla H (2005) Discrete, continuous, and hybrid Petri nets. Springer, Berlin zbMATHGoogle Scholar
  7. 7.
    Desel J, Juhás G (2001) What is a Petri net? In: Unifying Petri nets—advances in Petri nets, Tokyo, 2001. LNCS, vol 2128. Springer, Berlin, pp 1–25 CrossRefGoogle Scholar
  8. 8.
    Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker B, Grunwald S, Speer A, Winder K, Koch I (2008) Modularization of biochemical networks based on classification of Petri net T-invariants. BMC Bioinform 9:90 CrossRefGoogle Scholar
  9. 9.
    Gilbert D, Heiner M (2006) From Petri nets to differential equations—an integrative approach for biochemical network analysis. In: Proceedings of the ICATPN 2006. LNCS, vol 4024. Springer, Berlin, pp 181–200 Google Scholar
  10. 10.
    Gilbert D, Heiner M, Lehrack S (2007) A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Proceedings of the CMSB 2007. LNCS/LNBI, vol 4695. Springer, Berlin, pp 200–216 Google Scholar
  11. 11.
    Gilbert D, Heiner M, Rosser S, Fulton R, Gu X, Trybiło M (2008) A case study in model-driven synthetic biology. In: Proceedings of the 2nd IFIP conference on biologically inspired collaborative computing (BICC), IFIP WCC 2008, Milano, pp 163–175 Google Scholar
  12. 12.
    Heiner M, Donaldson R, Gilbert D (2010) Petri nets for systems biology. In: Iyengar MS (ed) Symbolic systems biology: theory and methods. Jones and Bartlett, Boston (to appear) Google Scholar
  13. 13.
    Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. J Bioinform 19:524–531 CrossRefGoogle Scholar
  14. 14.
    Heiner M, Gilbert D, Donaldson R (2008) Petri nets in systems and synthetic biology. In: Schools on formal methods (SFM). LNCS, vol 5016. Springer, Berlin, pp 215–264 Google Scholar
  15. 15.
    Heiner M, Koch I (2004) Petri net based model validation in systems biology. In: Proceedings of the 25th ICATPN 2004. LNCS, vol 3099. Springer, Berlin, pp 216–237 Google Scholar
  16. 16.
    Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets—demonstrated for apoptosis. Biosystems 75:15–28 CrossRefGoogle Scholar
  17. 17.
    Hofestädt R (1994) A Petri net application of metabolic processes. J Syst Anal Model Simul 16:113–122 zbMATHGoogle Scholar
  18. 18.
    Heiner M, Richter R, Schwarick M (2008) Snoopy—a tool to design and animate/simulate graph-based formalisms. In: Proceedings of the PNTAP 2008, associated to SIMUTools 2008. ACM digital library Google Scholar
  19. 19.
    Koch I, Heiner M (2008) Petri nets. In: Junker BH, Schreiber F (eds) Biological network analysis. Book series on bioinformatics. Wiley, New York, pp 139–179 CrossRefGoogle Scholar
  20. 20.
    Koch I, Junker BH, Heiner M (2005) Application of Petri net theory for modeling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7):1219–1226 CrossRefGoogle Scholar
  21. 21.
    Kohn KW, Riss J, Aprelikova O, Weinstein JN, Pommier Y, Barrett JC (2004) Properties of switch-like bioregulatory networks studied by simulation of the hypoxia response control system. Mol Cell Biol 15:3042–3052 CrossRefGoogle Scholar
  22. 22.
    Lautenbach K (1973) Exact liveness conditions of a Petri net class. GMD Report 82, Bonn (in German) Google Scholar
  23. 23.
    Larhlimi A, Bockmayr A (2005) Minimal metabolic behaviors and the reversible metabolic space. Preprint No 299, FU Berlin, DFG-Research Center Matheon Google Scholar
  24. 24.
    Larhlimi A, Bockmayr A (2008) On inner and outer descriptions of the steady-state flux cone of a metabolic network. In: Proceedings of the CMSB 2008. LNCS/LNBI, vol 5307. Springer, Berlin, pp 308–327 Google Scholar
  25. 25.
    Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9:563–571 Google Scholar
  26. 26.
    Matsuno H, Li C, Miyano S (2006) Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans Fundam Electron Commun Comput Sci E89-A(11):3166–3174 Google Scholar
  27. 27.
    Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003) Biopathways representation and simulation on hybrid functional Petri net. In: Silico Biol 3(0032) Google Scholar
  28. 28.
    Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77 4:541–580 CrossRefGoogle Scholar
  29. 29.
    Pagnoni A (1990) Project engineering: computer-oriented planning and operational decision making. Springer, Berlin zbMATHGoogle Scholar
  30. 30.
    Palsson BO (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge Google Scholar
  31. 31.
    Pascoletti KH (1986) Diophantine systems and solution methods to determine all Petri nets invariants. GMD Report 160, Bonn (in German) Google Scholar
  32. 32.
    Pedersen M (2008) Compositional definitions of minimal flows in Petri nets. In: Proceedings of the CMSB 2008. LNCS/LNBI, vol 5307. Springer, Berlin, pp 288–307 Google Scholar
  33. 33.
    Petri CA (1962) Communication with Automata (in German). Schriften des Instituts für Instrumentelle Mathematik, Bonn Google Scholar
  34. 34.
    Peterson JL (1981) Petri net theory and the modeling of systems. Prentice–Hall, New York Google Scholar
  35. 35.
    Papin JA, Reed JL, Palsson PO (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29(12):641–647 CrossRefGoogle Scholar
  36. 36.
    Priese L, Wimmel H (2003) Theoretical informatics—Petri nets. Springer, Berlin (in German) Google Scholar
  37. 37.
    Popova-Zeugmann L, Heiner M, Koch I (2005) Time Petri nets for modelling and analysis of biochemical networks. Fundam Inform 67:149–162 zbMATHMathSciNetGoogle Scholar
  38. 38.
    Reddy VN (1994) Modeling biological pathways: a discrete event systems approach. Master thesis, University of Maryland Google Scholar
  39. 39.
    Reisig W (1982) Petri nets; an introduction. Springer, Berlin Google Scholar
  40. 40.
    Reddy VN, Mavrovouniotis ML, Liebman ML (1993) Petri net representations in metabolic pathways. In Proceedings of the international conference on intelligent systems for molecular biology Google Scholar
  41. 41.
    Sackmann A (2005) Modelling and simulation of signal transduction pathways in saccharomyces cerevisiae using Petri net theory. Diploma thesis, Ernst Moritz Arndt Univ Greifswald (in German) Google Scholar
  42. 42.
    Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform 7:482 CrossRefGoogle Scholar
  43. 43.
    Schuster S, Hilgetag C, Schuster R (1993) Determining elementary modes of functioning in biochemical reaction networks at steady state. In Proceedings of the second Gauss symposium, pp 101–114 Google Scholar
  44. 44.
    Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Theor Biol 203:229–248 CrossRefGoogle Scholar
  45. 45.
    Snoopy website (2008) A tool to design and animate/simulate graphs. BTU Cottbus.
  46. 46.
    Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to mycoplasma pneumoniae. BioInformatics 18(2):351–361 CrossRefGoogle Scholar
  47. 47.
    Starke PH (1980) Petri nets: foundations, applications, theory. VEB Deutscher Verlag der Wissenschaften, Berlin (in German) Google Scholar
  48. 48.
    Starke PH (1990) Analysis of Petri net models. Teubner, Stuttgart (in German) zbMATHGoogle Scholar
  49. 49.
    Toudic JM (1982) Linear algebra algorithms for the structural analysis of Petri nets. Rev Tech Thomson CSF (France) 14(1):137–156 (in French) Google Scholar
  50. 50.
    Winder K (2006) Invariant-based structural characterization of Petri nets. Diploma thesis. BTU Cottbus, Dep of CS (in German) Google Scholar
  51. 51.
    Yu Y, Wang G, Simha R, Peng W, Turano F, Zeng C (2007) Pathway switching explains the sharp response characteristic of hypoxia response network system. PLos Comput Biol 8(3):1657–1668 MathSciNetGoogle Scholar
  52. 52.
    Zaitsev DA (2005) Functional Petri nets. TR 224, CNRS Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany

Personalised recommendations