Algorithmic Control: The Assembly and Operation of DNA Nanostructures and Molecular Machinery

  • Andrew J. TurberfieldEmail author
Part of the Natural Computing Series book series (NCS)


It gives me great pleasure to contribute to this celebration of Grzegorz Rozenberg’s contribution to the field of natural computing. I am grateful to Grzegorz for fostering this remarkably interdisciplinary community which has provided me with so much interest and enjoyment.

The theme of this symposium is ‘algorithmic bioprocesses’: this paper is concerned with the creation of artificial structures by algorithmic assembly of a biomolecule, DNA. I will survey different strategies for encoding assembly and operation algorithms in the design of DNA nanostructures, using examples that my colleagues and I have worked on.


Hairpin Loop Kagome Lattice Hybridization Chain Reaction Strand Displacement Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Oxford English Dictionary (1989) 2nd edn. Oxford University Press Google Scholar
  2. 2.
    Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738 CrossRefGoogle Scholar
  3. 3.
    Gilbert DE, Feigon J (1999) Multistranded DNA structures. Curr Opin Struct Biol 9:305–314 CrossRefGoogle Scholar
  4. 4.
    Seeman NC (2003) DNA in a material world. Nature 421:427–431 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Seeman NC (1990) De novo design of sequences for nucleic-acid structural engineering. J Biomol Struc Dyn 8:573–581 Google Scholar
  6. 6.
    Dirks RM, Lin M, Winfree E, Pierce NA (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32:1392–1403 CrossRefGoogle Scholar
  7. 7.
    Goodman RP (2005) NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures. Biotechniques 38:548–550 CrossRefGoogle Scholar
  8. 8.
    Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665 CrossRefGoogle Scholar
  9. 9.
    Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126 CrossRefGoogle Scholar
  10. 10.
    Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621 CrossRefGoogle Scholar
  11. 11.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:298–302 CrossRefGoogle Scholar
  12. 12.
    Chen JH, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633 CrossRefGoogle Scholar
  13. 13.
    Zhang YW, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116:1661–1669 CrossRefGoogle Scholar
  14. 14.
    Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32:3211–3220 CrossRefGoogle Scholar
  15. 15.
    Winfree E, Liu FR, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544 CrossRefGoogle Scholar
  16. 16.
    Mao CD, Sun WQ, Seeman NC (1999) Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443 CrossRefGoogle Scholar
  17. 17.
    LaBean TH, Yan H, Kopatsch J, Liu FR, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122:1848–1860 CrossRefGoogle Scholar
  18. 18.
    Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884 CrossRefGoogle Scholar
  19. 19.
    Malo J, Mitchell JC, Venien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ (2005) Engineering a 2D protein-DNA crystal. Angew Chem Int Ed 44:3057–3061 CrossRefGoogle Scholar
  20. 20.
    He Y, Chen Y, Liu HP, Ribbe AE, Mao CD (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127:12202–12203 CrossRefGoogle Scholar
  21. 21.
    He Y, Tian Y, Ribbe AE, Mao CD (2006) Highly connected two-dimensional crystals of DNA six-point-stars. J Am Chem Soc 128:15978–15979 CrossRefGoogle Scholar
  22. 22.
    Ortiz-Lombardia M, Gonzalez A, Eritja R, Aymami J, Azorin F, Coll M (1999) Crystal structure of a DNA Holliday junction. Nat Struct Biol 6:913–917 CrossRefGoogle Scholar
  23. 23.
    Eichman BF, Vargason JM, Mooers BH, Ho PS (2000) The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc Natl Acad Sci USA 97:3971–3976 CrossRefGoogle Scholar
  24. 24.
    Syôzi I (1951) Statistics of Kagomé lattice. Prog Theor Phys 6:306–308 zbMATHCrossRefGoogle Scholar
  25. 25.
    Zerbib D, Mezard C, George H, West SC (1998) Coordinated actions of RuvABC in holliday junction processing. J Mol Biol 281:621–630 CrossRefGoogle Scholar
  26. 26.
    Winfree E (1996) On the computational power of DNA annealing and ligation. In: Lipton RJ, Baum EB (eds) DNA based computers, vol 27. American Mathematical Society, Providence, pp 199–221 Google Scholar
  27. 27.
    Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407:493–496 CrossRefGoogle Scholar
  28. 28.
    Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2:2041–2053 CrossRefGoogle Scholar
  29. 29.
    Barish RD, Rothemund PWK, Winfree E (2005) Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett 12:2586–2592 CrossRefGoogle Scholar
  30. 30.
    Winfree E, Bekbolatov R (2004) Proofreading tile sets: error correction for algorithmic self-assembly. DNA Comput 2943:126–144 MathSciNetGoogle Scholar
  31. 31.
    Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90:118102 CrossRefGoogle Scholar
  32. 32.
    Bois JS, Venkataraman S, Choi HM, Spakowitz AJ, Wang ZG, Pierce NA (2005) Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Res 33:4090–4095 CrossRefGoogle Scholar
  33. 33.
    Seelig G, Yurke B, Winfree E (2006) Catalysed relaxation of a metastable fuel. J Am Chem Soc 128:12211–12220 CrossRefGoogle Scholar
  34. 34.
    Green SJ, Lubrich D, Turberfield AJ (2006) DNA hairpins: fuel for autonomous DNA devices. Biophys J 91:2966–2975 CrossRefGoogle Scholar
  35. 35.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101:15275–15278 CrossRefGoogle Scholar
  36. 36.
    Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–323 CrossRefGoogle Scholar
  37. 37.
    Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588 CrossRefGoogle Scholar
  38. 38.
    Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125 CrossRefGoogle Scholar
  39. 39.
    Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608 CrossRefGoogle Scholar
  40. 40.
    Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65 CrossRefGoogle Scholar
  41. 41.
    Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96 CrossRefGoogle Scholar
  42. 42.
    Erben CM, Goodman RP, Turberfield AJ (2006) Single-molecule protein encapsulation in a rigid DNA cage. Angew Chem Int Ed 45:7414–7417 CrossRefGoogle Scholar
  43. 43.
    Liao S, Seeman NC (2004) Translation of DNA signals into polymer assembly instructions. Science 306:2072–2074 CrossRefGoogle Scholar
  44. 44.
    Chen Y, Mao C (2004) Reprogramming DNA-directed reactions on the basis of a DNA conformational change. J Am Chem Soc 126:13240–13241 CrossRefGoogle Scholar
  45. 45.
    Snyder TM, Liu DR (2005) Ordered multistep synthesis in a single solution directed by DNA templates. Angew Chem Int Ed 44:7379–7382 CrossRefGoogle Scholar
  46. 46.
    Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6:978–983 CrossRefGoogle Scholar
  47. 47.
    Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207 CrossRefGoogle Scholar
  48. 48.
    Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126:10834–10835 CrossRefGoogle Scholar
  49. 49.
    Mao C, Sun W, Shen Z, Seeman NC (1999) A nanomechanical device based on the B–Z transition of DNA. Nature 397:144–146 CrossRefGoogle Scholar
  50. 50.
    Liu D, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42:5734–5736 CrossRefGoogle Scholar
  51. 51.
    Alberti P, Mergny J-L (2003) DNA duplex–quadruplex exchange as the basis for a nanomolecular machine. Proc Natl Acad Sci USA 100:1569–1573 CrossRefGoogle Scholar
  52. 52.
    Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5:1894–1898 CrossRefGoogle Scholar
  53. 53.
    Dittmer WU, Simmel FC (2004) Transcriptional control of DNA-based nanomachines. Nano Lett 4:689–691 CrossRefGoogle Scholar
  54. 54.
    Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284 CrossRefGoogle Scholar
  55. 55.
    SantaLucia J (1998) A unified view of polymer, dumbell, and oligonucleotide nearest neighbour thermodynamics. Proc Natl Acad Sci USA 95:1460–1465 CrossRefGoogle Scholar
  56. 56.
    Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a DNA track. Angew Chem Int Ed 43:4906–4911 CrossRefGoogle Scholar
  57. 57.
    Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44:4358–4361 CrossRefGoogle Scholar
  58. 58.
    Tian Y, He Y, Peng Y, Mao C (2005) A DNA enzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44:4355–4358 CrossRefGoogle Scholar
  59. 59.
    Pei R, Taylor SK, Stefanovic D, Rudchenko S, Mitchell TE, Stojanovic MN (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128:12693–12699 CrossRefGoogle Scholar
  60. 60.
    Heiter DF, Lunnen KD, Wilson GG (2005) Site-specific DNA-nicking mutants of the heterodimeric restriction endonuclease R. BbvCI J Mol Biol 348:631–640 CrossRefGoogle Scholar
  61. 61.
    Lee CS, Davis RW, Davidson N (1970) A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J Mol Biol 48:1–8 CrossRefGoogle Scholar
  62. 62.
    Yurke B, Mills AP (2003) Using DNA to power nanostructures. Genet Program Evol Mach 4:111–122 CrossRefGoogle Scholar
  63. 63.
    Venkataraman S, Dirks RM, Rothemund PWK, Winfree E, Pierce NA (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494 CrossRefGoogle Scholar
  64. 64.
    Yin P, Turberfield AJ, Reif JH (2005) Designs of autonomous unidirectional walking DNA devices. DNA Comput 3384:410–425 MathSciNetCrossRefGoogle Scholar
  65. 65.
    Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101:238101 CrossRefGoogle Scholar
  66. 66.
    Bath J, Green SJ, Allen KE, Turberfield AJ (2009) Mechanism for a directional, processive, and reversible DNA motor. Small (in press) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations