Impact of Higher-Order Correlations on Coincidence Distributions of Massively Parallel Data

  • Sonja Grün
  • Moshe Abeles
  • Markus Diesmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5286)

Abstract

The signature of neuronal assemblies is the higher-order correlation structure of the spiking activity of the participating neurons. Due to the rapid progress in recording technology the massively parallel data required to search for such signatures are now becoming available. However, existing statistical analysis tools are severely limited by the combinatorial explosion in the number of spike patterns to be considered. Therefore, population measaures need to be constructed reducing the number of tests and the recording time required, potentially for the price of being able to answer only a restricted set of questions.

Here we investigate the population histogram of the time course of neuronal activity as the simplest example. The amplitude distribution of this histogram is called the complexity distribution. Independent of neuron identity it describes the probability to observe a particular number of synchronous spikes.

On the basis of two models we illustrate that in the presence of higher-order correlations already the complexity distribution exhibits characteristic deviations from expectation. The distribution reflects the presence of correlation of a given order in the data near the corresponding complexity. However, depending on the details of the model also the regime of low complexities may be perturbed.

In conclusion we propose that, for certain research questions, new statistical tools can overcome the problems caused by the combinatorial explosion in massively parallel recordings by evaluating features of the complexity distribution.

Keywords and Phrases

spike synchronization higher-order synchrony massively parallel spike trains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M., Bergman, H., Margalit, E., Vaadia, E.: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70(4), 1629–1638 (1993)Google Scholar
  2. Abeles, M., Gerstein, G.L.: Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J. Neurophysiol. 60(3), 909–924 (1988)Google Scholar
  3. Aertsen, A.M.H.J., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of neuronal firing correlation: Modulation of ‘effective connectivity’. J. Neurophysiol. 61(5), 900–917 (1989)Google Scholar
  4. Brown, E.N., Kaas, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)CrossRefGoogle Scholar
  5. Csicsvari, J., Henze, D.A., Jamieson, B., Harris, K.D., Sirota, A., Barth, P., Wise, K.D., Buzsaki, G.: Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314–1323 (2003)CrossRefGoogle Scholar
  6. Dayhoff, J.E., Gerstein, G.L.: Favored patterns in spike trains. I. detection. J. Neurophysiol. 49(6), 1334–1348 (1983)Google Scholar
  7. Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)CrossRefGoogle Scholar
  8. Ehm, W., Staude, B., Rotter, S.: Decomposition of neuronal assembly activity via empirical de-poissonization. Electron. J. Statist. 1, 473–495 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. Gerstein, G.L., Perkel, D.H., Dayhoff, J.E.: Cooperative firing activity in simultaneously recorded populations of neurons: Detection and measurement. J. Neurosci. 5(4), 881–889 (1985)Google Scholar
  10. Grün, S.: Data driven significance estimation for precise spike correlation (invited review). J. Neurophysiol. (submitted 2008)Google Scholar
  11. Grün, S., Abeles, M., Diesmann, M.: The impact of higher-order correlations on coincidence distributions of massively parallel data. In: Proc. 5th Meeting German Neuroscience Society, pp. 650–651 (2003)Google Scholar
  12. Grün, S., Diesmann, M., Aertsen, A.: ‘Unitary Events’ in multiple single-neuron spiking activity. I. Detection and significance. Neural Comput. 14(1), 43–80 (2002a)CrossRefMATHGoogle Scholar
  13. Grün, S., Diesmann, M., Aertsen, A.: Unitary Events in multiple single-neuron spiking activity. II. Non-Stationary data. Neural Comput. 14(1), 81–119 (2002b)CrossRefMATHGoogle Scholar
  14. Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. J. Neurosci. Methods 94(1), 67–79 (1999)CrossRefGoogle Scholar
  15. Gütig, R., Aertsen, A., Rotter, S.: Analysis of higher-order neuronal interactions based on conditional inference. Biol. Cybern. 88(5), 352–359 (2003)CrossRefMATHGoogle Scholar
  16. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 5670(304), 559–564 (2004)CrossRefGoogle Scholar
  17. Kohn, A., Smith, M.A.: Stimulus dependence of neuronal correlations in primary visual cortex of the Macaque. J. Neurosci. 25(14), 3661–3673 (2005)CrossRefGoogle Scholar
  18. Kuhn, A., Aertsen, A., Rotter, S.: Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput. 1(15), 67–101 (2003)CrossRefMATHGoogle Scholar
  19. Martignon, L., von Hasseln, H., Grün, S., Aertsen, A., Palm, G.: Detecting higher-order interactions among the spiking events in a group of neurons. Biol. Cybern. 73, 69–81 (1995)CrossRefMATHGoogle Scholar
  20. Nakahara, H., Amari, S.: Information-geometric measure for neural spikes. Neural Comput. 14, 2269–2316 (2002)CrossRefMATHGoogle Scholar
  21. Nicolelis, M., Ghazanfar, A., Faggin, B., Votaw, S., Oliverira, L.: Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18(4), 529–537 (1997)CrossRefGoogle Scholar
  22. Nowak, L.G., Munk, M.H., Nelson, J.I., James, A., Bullier, J.: Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J. Neurophysiol. 74(6), 2379–2400 (1995)Google Scholar
  23. Pazienti, A., Diesmann, M., Grün, S.: The effectiveness of systematic spike dithering depends on the precision of cortical synchronization. Brain Research 1225, 39–46 (2008)CrossRefGoogle Scholar
  24. Pipa, G., Grün, S.: Non-parametric significance estimation of joint-spike events by shuffling and resampling. Neurocomputing 52–54, 31–37 (2003)CrossRefGoogle Scholar
  25. Pipa, G., Wheeler, D., Singer, W., Nikolic, D.: Neuroxidence: Reliable and efficient analysis of an excess or deficiency of joint-spike events. J. Comput. Neurosci. 25(1), 64–88 (2008)CrossRefGoogle Scholar
  26. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Hamutal, S., Abeles, M.: Spatiotemporal structure of cortical activity: Properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)Google Scholar
  27. Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)CrossRefGoogle Scholar
  28. Schneider, G., Grün, S.: Analysis of higher-order correlations in multiple parallel processes. Neurocomputing 52–54, 771–777 (2003)CrossRefGoogle Scholar
  29. Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006)CrossRefGoogle Scholar
  30. Schrader, S., Grün, S., Diesmann, M., Gerstein, G.: Detecting synfire chain activity using massively parallel spike train recording (in press, 2008)Google Scholar
  31. Shlens, J., Field, G.D., Gauthier, J.L., Matthew, I.P.D., Sher, A., Litke, A.M., Chichilnisky, E.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)CrossRefGoogle Scholar
  32. Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., Teicher, M., Abeles, M.: Temporally precise cortical firing patterns are associated with distinct action segments. J. Neurophysiol. 96(5), 2645–2652 (2006)CrossRefGoogle Scholar
  33. Staude, B., Rotter, S., Grün, S.: Detecting the existence of higher-order correlations in multiple single-unit spike trains. In: Society for Neuroscience, Volume 103.9/AAA18 of Abstract Viewer/Itinerary Planner, Washington, DC (2007)Google Scholar
  34. Staude, B., Rotter, S., Grün, S.: Inferring assembly-activity from population spike trains (submitted, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sonja Grün
    • 1
  • Moshe Abeles
    • 2
  • Markus Diesmann
    • 1
  1. 1.Theoretical Neuroscience GroupRIKEN Brain Science InstituteSaitamaJapan
  2. 2.Gonda Brain Research CenterBar Ilan UniversityRamat GanIsrael

Personalised recommendations