Design and Evaluation of a Sound Based Water Flow Measurement System

  • Alejandro Ibarz
  • Gerald Bauer
  • Roberto Casas
  • Alvaro Marco
  • Paul Lukowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5279)

Abstract

This paper presents a low-cost, easy to install sound-based system for water usage monitoring in a household environment. It extends the state of the art but not only detecting that water is flowing in a pipe, but also quantifying the flow thus allowing us to compute the amount of water used. We describe the system architecture including hardware, software and the signal processing and pattern recognition algorithms used. We present an extensive evaluation in a real life noisy kitchen environment. We show an accuracy of over 90 percent on classifying six different water flow levels. We also demonstrate good performance measuring water consumption when compared with the home’s water meter.

Keywords

Smart-sensors models sensing at home acoustic event classification water usage monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, G., Lukowicz, P.: Developing a Sub Room Level Indoor Location System for Wide Scale Deployment in Assisted Living Systems. In: Miesenberger, K., Klaus, J., Fagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1057–1064. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Stäger, M., Lukowicz, P., Tröster, G.: Power and accuracy trade-offs in sound-based context recognition systems. Pervasive and Mobile Computing, vol. 3, pp. 300–327. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Fogarty, J., Au, C., Hudson, S.E.: Sensing from the Basement: A Feasibility Study of Unobtrusive and Low-Cost Home Activity Recognition. In: Proceedings of the ACM Symposium on User Interface Software and Technology (UIST 2006), pp. 91–100 (2006)Google Scholar
  4. 4.
    Chen, J., Zhang, J., Kam, A.H., Shue, L.: An automatic acoustic bathroom monitoring system. In: IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, May 23-26, 2005, vol. 2, pp. 1750–1753 (2005)Google Scholar
  5. 5.
    Kraft, F., Schaaf, T., Waibel, A., Malkin, R.: Temporal ICA for Classification of Acoustic Events in a Kitchen Environment. In: 9th European Conference on Speech Communication and Technology 2005, Interspeech 2005, Lisboa, Portugal, September 13, 2005, pp. 2689–2692 (2005)Google Scholar
  6. 6.
    Stager, M., Lukowicz, P., Troster, G.: Implementation and evaluation of a low-power sound-based user activity recognition system. In: Eighth International Symposium on Wearable Computers. ISWC 2004, 31 October-3 November 2004, vol. 1, pp. 138–141 (2004)Google Scholar
  7. 7.
    Bannach, D., Amft, O., Lukowicz, P.: Rapid Prototyping of Activity Recognition Applications. Pervasive Computing 7(2), 22–31 (2008)CrossRefGoogle Scholar
  8. 8.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006), pp. 935–940 (2006)Google Scholar
  9. 9.
    Bluetooth Special Interest Group, https://www.bluetooth.org/apps/content/
  10. 10.
    Stevens, S., Volkman, J., Newman, E.: A scale for the measurement of the psychological magnitude of pitch. Journal of the Acoustical Society of America 8(3), 185–190 (1937)CrossRefGoogle Scholar
  11. 11.
    Liu, H., Motoda, H.: Feature Extraction, Construction and Selection. Kluwer Academic Publisher Group, Boston (1998)CrossRefMATHGoogle Scholar
  12. 12.
    Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publisher Group, Boston (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Bishop, C.: Pattern Recognition and Machine Learning, 1st edn. Springer, Heidelberg (2007)MATHGoogle Scholar
  14. 14.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alejandro Ibarz
    • 1
  • Gerald Bauer
    • 2
  • Roberto Casas
    • 1
  • Alvaro Marco
    • 1
  • Paul Lukowicz
    • 2
  1. 1.TecnoDiscap GroupUniversity of ZaragozaZaragozaSpain
  2. 2.Embedded Systems LabUniversity of PassauPassauGermany

Personalised recommendations