Advertisement

Ion-Beam-Induced Amorphization and Epitaxial Crystallization of Silicon

  • J. S. Williams
  • G. de M. Azevedo
  • H. Bernas
  • F. Fortuna
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 116)

Abstract

Ion-induced collisions produce athermal atomic movements at and around the surface or interface, inducing step formation and modifying growth conditions. The latter may be controlled by varying the temperature and ion-beam characteristics, guiding the system between nonequilibrium and quasiequilibrium states. Silicon is an ideal material to observe and understand such processes. For ion irradiation at or below room temperature, damage due to collision cascades leads to Si amorphization. At temperatures where defects are mobile and interact, irradiation can lead to layer-by-layer amorphization, whereas at higher temperatures irradiation can lead to the recrystallization of previously amorphized layers. This chapter focuses on the role of ion beams in the interface evolution. We first give an overview of ion beam-induced epitaxial crystallization (IBIEC) and ion-beam-induced amorphization as observed in silicon and identify unresolved issues. Similarities and differences with more familiar surface thermal growth processes are emphasized. Theories and computer simulations developed for surface relaxation help us to quantify several important aspects of IBIEC. Recent experiments provide insight into the influence of ion-induced defect interactions on IBIEC, and are also partly interpreted via computer simulations. The case of phase transformations and precipitation at interfaces is also considered.

Keywords

Atomic Displacement Amorphous Layer Interface Roughness Collision Cascade Epitaxial Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zangwill, Physics at Surfaces (Cambridge University Press, Cambridge, 1988) Google Scholar
  2. 2.
    F. Spaepen, D. Turnbull, in Laser Annealing of Semiconductors, ed. by J.M. Poate, J.W. Mayer (Academic Press, New York, 1982), p. 15 Google Scholar
  3. 3.
    B. Strickland, C. Roland, Phys. Rev. B 51, 5061 (1995) CrossRefADSGoogle Scholar
  4. 4.
    H. Hensel, H.M. Urbassek, Phys. Rev. B 58, 2050 (1998) CrossRefADSGoogle Scholar
  5. 5.
    R.S. Averback, T. Diaz de la Rubia, in Solid State Physics, vol. 51, ed. by H. Ehrenreich, F. Spaepen (Academic Press, New York, 1998), p. 282 Google Scholar
  6. 6.
    L.M. Howe, M.H. Rainville, Nucl. Instrum. Methods Phys. Res. B 19/20, 61 (1987) CrossRefGoogle Scholar
  7. 7.
    F.F. Morehead Jr., B.L. Crowder, Radiat. Eff. 6, 27 (1970) CrossRefADSGoogle Scholar
  8. 8.
    J.R. Dennis, E.B. Hale, J. Appl. Phys. 49, 1119 (1978) CrossRefADSGoogle Scholar
  9. 9.
    M.L. Swanson, J.R. Parsons, C.W. Hoelke, Radiat. Eff. 9, 249 (1971) CrossRefADSGoogle Scholar
  10. 10.
    F.L. Vook, H.J. Stein, Radiat. Eff. 2, 23 (1969) CrossRefADSGoogle Scholar
  11. 11.
    L.A. Christel, J.F. Gibbons, T.W. Sigmon, J. Appl. Phys. 52, 7143 (1981) CrossRefADSGoogle Scholar
  12. 12.
    J.S. Williams, Unpublished, 1998 Google Scholar
  13. 13.
    J.S. Williams, MRS Bull. 17, 47 (1992) Google Scholar
  14. 14.
    S. Takeda, M. Kohyama, A. Ibe, Philos. Mag. A 70, 287 (1994) CrossRefADSGoogle Scholar
  15. 15.
    R.D. Goldberg, J.S. Williams, R.G. Elliman, Phys. Rev. Lett. 82, 771 (1999) CrossRefADSGoogle Scholar
  16. 16.
    R.D. Goldberg, J.S. Williams, R.G. Elliman, Nucl. Instrum. Methods Phys. Res. B 106, 242 (1995) CrossRefADSGoogle Scholar
  17. 17.
    J.S. Williams, H.H. Tan, R.D. Goldberg, R.A. Brown, C. Jagadish, Mater. Res. Soc. Symp. Proc. 316, 15 (1994) Google Scholar
  18. 18.
    J.S. Williams, R.D. Goldberg, M. Petravic, Z. Rao, Nucl. Instrum. Methods Phys. Res. B 84, 199 (1994) CrossRefADSGoogle Scholar
  19. 19.
    R.G. Elliman, J. Linnros, W.L. Brown, Mater. Res. Soc. Symp. Proc. 100, 363 (1988) Google Scholar
  20. 20.
    K.A. Jackson, J. Mater. Res. 3, 1218 (1988) CrossRefADSGoogle Scholar
  21. 21.
    J.S. Williams, Trans. Mater. Res. Soc. Jpn. 17, 417 (1994) Google Scholar
  22. 22.
    R.D. Goldberg, R.G. Elliman, J.S. Williams, Nucl. Instrum. Methods Phys. Res. B 80/81, 596 (1993) CrossRefADSGoogle Scholar
  23. 23.
    J. Linnros, R.G. Elliman, W.L. Brown, J. Mater. Res. 3, 1208 (1988) CrossRefADSGoogle Scholar
  24. 24.
    R.G. Elliman, J.S. Williams, W.L. Brown, A. Leiberich, D.A. Maher, R.V. Knoell, Nucl. Instrum. Methods Phys. Res. B 19/20, 435 (1987) CrossRefGoogle Scholar
  25. 25.
    J.S. Williams, R.G. Elliman, W.L. Brown, T.E. Seidel, Phys. Rev. Lett. 55, 1482 (1985) CrossRefADSGoogle Scholar
  26. 26.
    G.L. Olson, R.A. Roth, Mater. Sci. Rep. 3, 1 (1988) CrossRefGoogle Scholar
  27. 27.
    J. Linnros, G. Holmén, B. Svensson, Phys. Rev. B 32, 2770 (1985) CrossRefADSGoogle Scholar
  28. 28.
    F. Priolo, C. Spinella, A. La Ferla, E. Rimini, G. La Ferla, Appl. Surf. Sci. 43, 178 (1989) CrossRefADSGoogle Scholar
  29. 29.
    G. Lulli, P.G. Merli, M. Vittori Antisari, Phys. Rev. B 36, 8038 (1987) CrossRefADSGoogle Scholar
  30. 30.
    F. Priolo, E. Rimini, Mater. Sci. Rep. 5, 319 (1990) CrossRefGoogle Scholar
  31. 31.
    J.S. Williams, R.G. Elliman, W.L. Brown, T.E. Seidel, Mater. Res. Soc. Symp. Proc. 37, 127 (1985) Google Scholar
  32. 32.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985) Google Scholar
  33. 33.
    S. Cannavo, A. La Ferla, S.U. Campisano, E. Rimini, G. La Ferla, L. Gandolfi, J. Liu, M. Servidori, Mater. Res. Soc. Symp. Proc. 51, 329 (1986) Google Scholar
  34. 34.
    D.M. Maher, R.G. Elliman, J. Linnros, J.S. Williams, R.V. Knoell, W.L. Brown, Mater. Res. Soc. Symp. Proc. 93, 87 (1987) Google Scholar
  35. 35.
    J.S. Williams, R.G. Elliman, Phys. Rev. Lett. 51, 1069 (1983) CrossRefADSGoogle Scholar
  36. 36.
    F. Priolo, C. Spinella, E. Rimini, Phys. Rev. B 41, 5235 (1990) CrossRefADSGoogle Scholar
  37. 37.
    E.F. Kennedy, L. Csepregi, J.W. Mayer, T.W. Sigmon, J. Appl. Phys. 48, 4241 (1977) CrossRefADSGoogle Scholar
  38. 38.
    J.M. Poate, D.C. Jacobson, J.S. Williams, R.G. Elliman, D.O. Boerma, Nucl. Instrum. Methods B 19/20, 480 (1987) CrossRefGoogle Scholar
  39. 39.
    F. Priolo, C. Spinella, A. La Ferla, A. Battaglia, E. Rimini, G. La Ferla, A. Carnera, A. Gasparotto, Mater. Res. Soc. Symp. Proc. 128, 563 (1989) Google Scholar
  40. 40.
    F. Spaepen, E. Nygren, A.V. Wagner, in Crucial Issues in Semiconductor Materials & Processing Technologies (Kluwer Academic, Boston, 1992), p. 483 Google Scholar
  41. 41.
    J.M. Poate, J. Linnros, F. Priolo, D.C. Jacobson, J.L. Batstone, M.O. Thompson, Phys. Rev. Lett. 60, 1322 (1988) CrossRefADSGoogle Scholar
  42. 42.
    J. Linnros, W.L. Brown, R.G. Elliman, Mater. Res. Soc. Symp. Proc. 100, 369 (1988) Google Scholar
  43. 43.
    A. Kinomura, J.S. Williams, K. Fuji, Phys. Rev. B 59, 15214 (1999) CrossRefADSGoogle Scholar
  44. 44.
    V. Heera, T. Henkel, R. Kögler, W. Skorupa, Phys. Rev. B 52, 15776 (1999) CrossRefADSGoogle Scholar
  45. 45.
    J. Linnros, G. Hólmen, J. Appl. Phys. 59, 1513 (1986) CrossRefADSGoogle Scholar
  46. 46.
    R.G. Elliman, J.S. Williams, D.M. Maher, W.L. Brown, Mater. Res. Soc. Symp. Proc. 51, 319 (1986) Google Scholar
  47. 47.
    J.S. Williams, I.M. Young, M.J. Conway, Nucl. Instrum. Methods Phys. Res. B 161–163, 505 (2000) CrossRefGoogle Scholar
  48. 48.
    G. de M. Azevedo, J.S. Williams, I.M. Young, M.J. Conway, A. Kinomura, Nucl. Instrum. Methods B 190, 772 (2002) CrossRefADSGoogle Scholar
  49. 49.
    M.T. Robinson, I.M. Torrens, Phys. Rev. B 9, 5008 (1974) CrossRefADSGoogle Scholar
  50. 50.
    M.T. Robinson, Nucl. Instrum. Methods B 48, 408 (1990) CrossRefADSGoogle Scholar
  51. 51.
    G. de M. Azevedo, J.C. Martini, M. Behar, P.L. Grande, Nucl. Instrum. Methods B 149, 301 (1999) CrossRefADSGoogle Scholar
  52. 52.
    G. Molière, Z. Naturforschung: Sect. A-A J. Phys. Sci. 2a, 133 (1947) ADSGoogle Scholar
  53. 53.
    W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991). And references therein Google Scholar
  54. 54.
    A. Kinomura, A. Chayahara, N. Tsubouchi, C. Heck, Y. Horino, Y. Miyagawa, Nucl. Instrum. Methods B 175–177, 319 (2001) CrossRefGoogle Scholar
  55. 55.
    G.A. Kachurin, Sov. Phys. Semicond. 14, 461 (1980) Google Scholar
  56. 56.
    H.A. Atwater, C.V. Thompson, H.I. Smith, Phys. Rev. Lett. 60, 112 (1988) CrossRefADSGoogle Scholar
  57. 57.
    G. Lulli, P.G. Merli, M. Vittori Antisari, Mater. Res. Soc. Symp. Proc. 100, 375 (1988) Google Scholar
  58. 58.
    J. Nakata, M. Takahashi, K. Kajiyama, Jpn. J. Appl. Phys. 20, 2211 (1981) CrossRefADSGoogle Scholar
  59. 59.
    L.E. Mosley, M.A. Paesler, Appl. Phys. Lett. 45, 86 (1984) CrossRefADSGoogle Scholar
  60. 60.
    J.P. Guillemet, B. de Mauduit, R. Sinclair, T.J. Konno, in Int. Conf. Electr. Micros. (ICEM-13), Paris, France, 1994 Google Scholar
  61. 61.
    G.Q. Lu, E. Nygren, M.J. Aziz, J. Appl. Phys. 70, 5323 (1991) CrossRefADSGoogle Scholar
  62. 62.
    J.S. Custer, A. Battaglia, M. Saggio, F. Priolo, Phys. Rev. Lett. 69, 780 (1992) CrossRefADSGoogle Scholar
  63. 63.
    F. Fortuna, P. Nedellec, M.O. Ruault, H. Bernas, X.W. Lin, P. Boucaud, Nucl. Instrum. Methods B 100, 206 (1995) CrossRefGoogle Scholar
  64. 64.
    A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995) zbMATHCrossRefGoogle Scholar
  65. 65.
    F. Family, T. Vicsek, J. Phys. A 18, L75 (1985) CrossRefADSGoogle Scholar
  66. 66.
    S.F. Edwards, D.R. Wilkinson, Proc. R. Soc. Lond. A 381, 17 (1982) CrossRefADSMathSciNetGoogle Scholar
  67. 67.
    M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986) zbMATHCrossRefADSGoogle Scholar
  68. 68.
    M. Lohmeier, S. de Vries, J. Custer, F. Vlieg, M.S. Finney, F. Priolo, A. Battaglia, Appl. Phys. Lett. 64, 1803 (1994) CrossRefADSGoogle Scholar
  69. 69.
    M.-J. Caturla, T. Diaz de la Rubia, L.A. Marques, G.H. Gilmer, Phys. Rev. B 54(16), 683 (1996) Google Scholar
  70. 70.
    D.M. Stock, B. Weber, K. Gärtner, Phys. Rev. B 61, 8150 (2000) CrossRefADSGoogle Scholar
  71. 71.
    L. Pelaz, L. Marquès, J. Barbolla, J. Appl. Phys. 96, 5947 (2004) CrossRefADSGoogle Scholar
  72. 72.
    J. Desimoni, M. Behar, H. Bernas, Z. Liliental-Weber, J. Washburn, Appl. Phys. Lett. 62, 306 (1993) CrossRefADSGoogle Scholar
  73. 73.
    X.W. Lin, M. Behar, J. Desimoni, H. Bernas, Z. Liliental-Weber, J. Washburn, Appl. Phys. Lett. 63, 105 (1993) CrossRefADSGoogle Scholar
  74. 74.
    X.W. Lin, Z. Liliental-Weber, J. Washburn, H. Bernas, J. Desimoni, J. Appl. Phys. 75, 4686 (1994). And refs. therein CrossRefADSGoogle Scholar
  75. 75.
    J.A. Venables, G.D. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984) CrossRefADSGoogle Scholar
  76. 76.
    M. Zinke-Allmang, L.C. Feldman, M.H. Grabow, Surf. Sci. Rep. 16, 377 (1992) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. S. Williams
    • 1
  • G. de M. Azevedo
    • 1
  • H. Bernas
    • 2
  • F. Fortuna
    • 2
  1. 1.Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia
  2. 2.CSNSM-CNRSUniversity Paris-Sud 11OrsayFrance

Personalised recommendations