Stochastic Calculus of Looping Sequences for the Modelling and Simulation of Cellular Pathways

  • Roberto Barbuti
  • Andrea Maggiolo-Schettini
  • Paolo Milazzo
  • Paolo Tiberi
  • Angelo Troina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5121)


The paper presents the Stochastic Calculus of Looping Sequences (SCLS) suitable to describe microbiological systems, such as cellular pathways, and their evolution. Systems are represented by terms. The terms of the calculus are constructed by basic constituent elements and operators of sequencing, looping, containment and parallel composition. The looping operator allows tying up the ends of a sequence, thus creating a circular sequence which can represent a membrane.

The evolution of a term is modelled by a set of rewrite rules enriched with stochastic rates representing the speed of the activities described by the rules, and can be simulated automatically.

As applications, we give SCLS representations of the regulation process of the lactose operon in Escherichia coli and of the quorum sensing in Pseudomonas aeruginosa.

A prototype simulator (SCLSm) has been implemented in F# and used to run the experiments. A public version of the tool is available at the url:


Cellular Pathway Loop Sequence Beta Galactosidase Concrete Term Alphabet Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: The Calculus of Looping Sequences. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 387–423. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Extending the Calculus of Looping Sequences to Model Protein Interaction at the Domain Level. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 638–649. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A calculus of looping sequences for modelling microbiological systems. Fund. Inform. 72, 21–35 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulation congruences in the calculus of looping sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulations in Calculi Modelling Membranes. Formal Aspects of Computing (to appear, 2008)Google Scholar
  7. 7.
    Cardelli, L.: Brane calculi. Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and querying biomolecular interaction networks. Theor. Comput. Sci. 325, 25–44 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. (to appear, 2008)Google Scholar
  10. 10.
    Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theor. Comput. Sci. 325, 111–140 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable modelling of biological pathways. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325, 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dockery, J.D., Keener, J.P.: A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bulletin of Mathematical Biology 63, 95–116 (2001)CrossRefGoogle Scholar
  14. 14.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  15. 15.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  16. 16.
    James, S., Nilsson, P., James, G., Kjelleberg, S., Fagerstroem, T.: Luminescence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux Regulation. Journal of Molecular Biology 296, 1127–1137 (2000)CrossRefGoogle Scholar
  17. 17.
    Krivine, J., Milner, R., Troina, A.: Stochastic Bigraphs. In: Proc. of the 24th Conference on Mathematical Foundations of Programming Semantics (MFPS 2008). ENTCS. Elsevier, Amsterdam (to appear, 2008)Google Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. on Software Tools for Technology Transfer 6, 128–142 (2004)Google Scholar
  19. 19.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Prooceedings of Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)Google Scholar
  20. 20.
    Milazzo, P.: Qualitative and quantitative formal modeling of biological systems. Ph.D. Thesis, University of Pisa (2007)Google Scholar
  21. 21.
    Pǎun, G.: Membrane computing. An introduction. Springer, Heidelberg (2002)Google Scholar
  22. 22.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling Vibrio fischeri’s behaviour using P systems. In: Proc. of the 8th European Conference on Artificial Life, Systems Biology Workshop (2005)Google Scholar
  23. 23.
    Priami, C.: Stochastic π-calculus. The Computer Journal 38, 578–589 (1995)CrossRefGoogle Scholar
  24. 24.
    Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett. 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325, 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  28. 28.
    Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Modelling in Molecular Biology. Natural Computing Series, pp. 219–266. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proc. of Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  30. 30.
    Stevens, A.M., Greenberg, E.P.: Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. of Bacteriology 179, 557–562 (1997)Google Scholar
  31. 31.
    Van Delden, C., Iglewski, B.H.: Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551–560 (1998)CrossRefGoogle Scholar
  32. 32.
    Ward, J.P., King, J.R., Koerber, A.J., Croft, J.M., Sockett, R.E., Williams, P.: Early development and quorum sensing in bacterial biofilms. Journal of Mathematical Biology 47, 23–55 (2003)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Wilkinson, D.: Stochastic modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  34. 34.
    Wong, P., Gladney, S., Keasling, J.D.: Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnology Progress 13, 132–143 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo-Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Paolo Tiberi
    • 1
  • Angelo Troina
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Dipartimento di InformaticaUniversità di TorinoTorinoItaly

Personalised recommendations