Advertisement

A Property-Driven Approach to Formal Verification of Process Models

  • Benoît Combemale
  • Xavier Crégut
  • Pierre-Loïc Garoche
  • Xavier Thirioux
  • Francois Vernadat
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 12)

Abstract

More and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex systems. Expressing properties specific to these metamodels, and checking them, appear as an urgent need. Until now, the only complete industrial solutions that are available consider structural properties such as the ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL.

This paper addresses a method to specify and then check temporal properties over models. The case study is SimplePDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model and its associated temporal properties. We check these properties using a model checker and enrich the model with the analysis results. This work is a first step towards a generic framework to specify and effectively check temporal properties over arbitrary models.

Keywords

Metamodelling Properties Validation Verification Temporal OCL Process Model Petri Nets LTL Models Semantics Model Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Object Management Group, Inc.: Software Process Engineering Metamodel (SPEM) 2.0 Specification, Final Adopted Specification (2007)Google Scholar
  3. 3.
    Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Definition of an Executable SPEM2.0. In: 14th APSEC, Japan. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  4. 4.
    Cousot, P.: Methods and logics for proving programs. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), 841–994 (1990)Google Scholar
  5. 5.
    Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0 Specification, Final Adopted Specification (2003)Google Scholar
  6. 6.
    Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc, Amsterdam (2003)Google Scholar
  7. 7.
    Richters, M., Gogolla, M.: Validating UML models and OCL constraints. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 265–277. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Combemale, B., Rougemaille, S., Crégut, X., Migeon, F., Pantel, M., Maurel, C., Coulette, B.: Towards a rigorous metamodeling. In: 2nd International Workshop on Model-Driven Enterprise Information Systems, INSTICC (2006)Google Scholar
  9. 9.
    Combemale, B., Crégut, X., Berthomieu, B., Vernadat, F.: SimplePDL2Tina: Mise en oeuvre d’une Validation de Modede Processus. In: 3ieme journées sur l’Ingénierie Dirigée par les Modéles (IDM), Toulouse, France (2007)Google Scholar
  10. 10.
    Ziemann, P., Gogolla, M.: An extension of OCL with temporal logic. In: Critical Systems Development with UML – Proceedings of the UML 2002 workshop, vol. TUM-I0208, pp. 53–62 (2002)Google Scholar
  11. 11.
    Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA – construction of abstract state spaces for Petri nets and time Petri nets. International Journal of Production Research 42, 2741–2756 (2004)CrossRefGoogle Scholar
  12. 12.
    Richters, M., Gogolla, M.: A metamodel for OCL. In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 156–171. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core Specification, Final Adopted Specification (2006)Google Scholar
  14. 14.
    Berthomieu, B., Vernadat, F.: Réseaux de Petri temporels : méthodes d’analyse et vérification avec TINA. Traité IC2 (2006)Google Scholar
  15. 15.
    Jouault, F., Kurtev, I.: Transforming models with ATL. In: Proceedings of the Model Transformations in Practice Workshop at MoDELS, Montego Bay, Jamaica (2005)Google Scholar
  16. 16.
    Jouault, F.: Loosely Coupled Traceability for ATL. In: Proceedings of the European Conference on Model Driven Architecture (ECMDA) workshop on traceability (2005)Google Scholar
  17. 17.
    Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Gurevich, Y.: The abstract state machine paradigm: What is in and what is out. In: Ershov Memorial Conference (2001)Google Scholar
  19. 19.
    Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of a language for model transformations. Technical report, Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA (2005)Google Scholar
  20. 20.
    Clark, T., Evans, A., Sammut, P., Willans, J.: Applied metamodelling - a foundation for language driven development. version 0.1 (2004)Google Scholar
  21. 21.
    Flake, S.: Temporal OCL extensions for specification of real-time constraints. In: SVERTS at UML 2003, San Francisco, CA, USA (2003)Google Scholar
  22. 22.
    Flake, S., Mueller, W.: Formal semantics of static and temporal state-oriented OCL constraints. Journal on Software and System Modeling (SoSyM) 2 (2003)Google Scholar
  23. 23.
    Cengarle, M.V., Knapp, A.: Towards OCL/RT. In: International Symposium of Formal Methods Europe (FME) - Getting IT Right, pp. 390–409. Springer, London (2002)Google Scholar
  24. 24.
    Distefano, D., Katoen, J.P., Rensink, A.: Towards model checking OCL. In: ECOOP Workshop on Dening a Precise Semantics for UML (2000)Google Scholar
  25. 25.
    Bradfield, J.C., Filipe, J.K., Stevens, P.: Enriching OCL using observational mu-calculus. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 203–217. Springer, Heidelberg (2002)Google Scholar
  26. 26.
    Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R., Gérard, S., Jézéquel, J.M.: Model-driven analysis and synthesis of concrete syntax. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual Concrete Syntaxes in Model Engineering. In: GPCE (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Benoît Combemale
    • 1
  • Xavier Crégut
    • 1
  • Pierre-Loïc Garoche
    • 1
  • Xavier Thirioux
    • 1
  • Francois Vernadat
    • 2
  1. 1.Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505)Université de ToulouseFrance
  2. 2.Laboratoire d’Analyse et d’Architecture des Systemes (CNRS)Université de ToulouseFrance

Personalised recommendations