Advertisement

Passive Reflectometry

  • Fabiano Romeiro
  • Yuriy Vasilyev
  • Todd Zickler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)

Abstract

Different materials reflect light in different ways, so reflectance is a useful surface descriptor. Existing systems for measuring reflectance are cumbersome, however, and although the process can be streamlined using cameras, projectors and clever catadioptrics, it generally requires complex infrastructure. In this paper we propose a simpler method for inferring reflectance from images, one that eliminates the need for active lighting and exploits natural illumination instead. The method’s distinguishing property is its ability to handle a broad class of isotropic reflectance functions, including those that are neither radially-symmetric nor well-represented by low-parameter reflectance models. The key to the approach is a bi-variate representation of isotropic reflectance that enables a tractable inference algorithm while maintaining generality. The resulting method requires only a camera, a light probe, and as little as one HDR image of a known, curved, homogeneous surface.

Keywords

Input Image Synthetic Image Bilateral Symmetry Grazing Angle Light Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fleming, R., Dror, R.O., Adelson, E.H.: Real-world illumination and the perception of surface reflectance properties. Journal of Vision 3 (2003)Google Scholar
  2. 2.
    Stark, M., Arvo, J., Smits, B.: Barycentric parameterizations for isotropic BRDFs. IEEE Transactions on Visualization and Computer Graphics 11, 126–138 (2005)CrossRefGoogle Scholar
  3. 3.
    Ngan, A., Durand, F., Matusik, W.: Experimental analysis of brdf models. In: Eurographics Symposium on Rendering, pp. 117–126 (2005)Google Scholar
  4. 4.
    Ward, G.: Measuring and modeling anisotropic reflection. Computer Graphics (Proc. ACM SIGGRAPH) (1992)Google Scholar
  5. 5.
    Marschner, S., Westin, S., Lafortune, E., Torrance, K., Greenberg, D.: Image-based BRDF measurement including human skin. In: Proc. Eurographics Symposium on Rendering, pp. 139–152 (1999)Google Scholar
  6. 6.
    Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M.: BRDF acquisition with basis illumination. In: Proc. IEEE Int. Conf. Computer Vision (2007)Google Scholar
  7. 7.
    Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of ACM SIGGRAPH, pp. 117–128 (2001)Google Scholar
  8. 8.
    Boivin, S., Gagalowicz, A.: Image-based rendering of diffuse, specular and glossy surfaces from a single image. In: Proceedings of ACM SIGGRAPH (2001)Google Scholar
  9. 9.
    Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of ACM SIGGRAPH (1999)Google Scholar
  10. 10.
    Georghiades, A.: Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo. In: Proc. IEEE Int. Conf. Computer Vision, pp. 816–823 (2003)Google Scholar
  11. 11.
    Hara, K., Nishino, K., Ikeuchi, K.: Mixture of spherical distributions for single-view relighting. IEEE Trans. Pattern Analysis and Machine Intelligence 30, 25–35 (2008)CrossRefGoogle Scholar
  12. 12.
    Patow, G., Pueyo, X.: A Survey of Inverse Rendering Problems. Computer Graphics Forum 22, 663–687 (2003)CrossRefGoogle Scholar
  13. 13.
    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Eurographics Rendering Workshop, vol. 98, pp. 11–22 (1998)Google Scholar
  14. 14.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Transactions on Graphics (Proc. ACM SIGGRAPH) (2003)Google Scholar
  15. 15.
    Westin, S.: Measurement data, Cornell University Program of Computer Graphics (2003), http://www.graphics.cornell.edu/online/measurements/
  16. 16.
    Matusik, W., Pfister, H., Brand, M., McMillan, L.: Efficient isotropic BRDF measurement. In: Proc. Eurographics Workshop on Rendering, pp. 241–247 (2003)Google Scholar
  17. 17.
    Alldrin, N., Zickler, T., Kriegman, D.: Photometric stereo with non-parametric and spatially-varying reflectance. In: Proc. CVPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fabiano Romeiro
    • 1
  • Yuriy Vasilyev
    • 1
  • Todd Zickler
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations