Temporal Dithering of Illumination for Fast Active Vision

  • Srinivasa G. Narasimhan
  • Sanjeev J. Koppal
  • Shuntaro Yamazaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)


Active vision techniques use programmable light sources, such as projectors, whose intensities can be controlled over space and time. We present a broad framework for fast active vision using Digital Light Processing (DLP) projectors. The digital micromirror array (DMD) in a DLP projector is capable of switching mirrors “on” and “off” at high speeds (106/s). An off-the-shelf DLP projector, however, effectively operates at much lower rates (30-60Hz) by emitting smaller intensities that are integrated over time by a sensor (eye or camera) to produce the desired brightness value. Our key idea is to exploit this “temporal dithering” of illumination, as observed by a high-speed camera. The dithering encodes each brightness value uniquely and may be used in conjunction with virtually any active vision technique. We apply our approach to five well-known problems: (a) structured light-based range finding, (b) photometric stereo, (c) illumination de-multiplexing, (d) high frequency preserving motion-blur and (e) separation of direct and global scene components, achieving significant speedups in performance. In all our methods, the projector receives a single image as input whereas the camera acquires a sequence of frames.


High Speed Camera Active Vision Lighting Direction Input Intensity Dynamic Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Will, P.M., Pennington, K.S.: Grid coding: A preprocessing technique for robot and machine vision. AI 2 (1971)Google Scholar
  2. 2.
    Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. 3DPVT (2002)Google Scholar
  3. 3.
    Davis, J., Nehab, D., Ramamoothi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. In: IEEE CVPR (2003)Google Scholar
  4. 4.
    Curless, B., Levoy, M.: Better optical triangulation through spacetime analysis. In: ICCV (1995)Google Scholar
  5. 5.
    Young, M., Beeson, E., Davis, J., Rusinkiewicz, S., Ramamoorthi, R.: Viewpoint-coded structured light. In: IEEE CVPR (2007)Google Scholar
  6. 6.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: CVPR (2003)Google Scholar
  7. 7.
    Zickler, T., Belhumeur, P., Kriegman, D.J.: Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 869–884. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Hertzmann, A., Seitz, S.M.: Shape and materials by example: A photometric stereo approach. In: IEEE CVPR (2003)Google Scholar
  9. 9.
    Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM SIGGRAPH (2005)Google Scholar
  10. 10.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM SIGGRAPH (2006)Google Scholar
  11. 11.
    Sen, P., Chen, B., Garg, G., Marschner, S.R., Horowitz, M., Levoy, M., Lensch, H.P.A.: Dual photography. ACM SIGGRAPH (2005)Google Scholar
  12. 12.
    Zhang, L., Nayar, S.K.: Projection defocus analysis for scene capture and image display. ACM SIGGRAPH (2006)Google Scholar
  13. 13.
    Dudley, D., Duncan, W., Slaughter, J.: Emerging digital micromirror device (dmd) applications. In: Proc. of SPIE, vol. 4985 (2003)Google Scholar
  14. 14.
    Nayar, S.K., Branzoi, V., Boult, T.: Programmable imaging using a digital micromirror array. In: IEEE CVPR (2004)Google Scholar
  15. 15.
    Takhar, D., Laska, J., Wakin, M., Duarte, M., Baron, D., Sarvotham, S., Kelly, K., Baraniuk, R.: A new compressive imaging camera architecture using optical-domain compression. Computational Imaging IV at SPIE Electronic Imaging (2006)Google Scholar
  16. 16.
    Jones, A., McDowall, I., Yamada, H., Bolas, M., Debevec, P.: Rendering for an interactive 360 degree light field display. ACM SIGGRAPH (2007)Google Scholar
  17. 17.
    McDowall, I., Bolas, M.: Fast light for display, sensing and control applications. In: IEEE VR Workshop on Emerging Display Technologies (2005)Google Scholar
  18. 18.
    Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: A unified approach to image-based modeling and spatially immersive displays. ACM SIGGRAPH (1998)Google Scholar
  19. 19.
    Cotting, D., Naef, M., Gross, M., Fuchs, H.: Embedding imperceptible patterns into projected images for simultaneous acquisition and display. In: ISMAR (2004)Google Scholar
  20. 20.
    Schechner, Y.Y., Nayar, S.K., Belhumeur, P.N.: A theory of multiplexed illumination. In: ICCV (2003)Google Scholar
  21. 21.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: Motion deblurring using fluttered shutter. ACM SIGGRAPH (2006)Google Scholar
  22. 22.
    Nii, H., Sugimoto, M., Inami, M.: Smart light-ultra high speed projector for spatial multiplexing optical transmission. In: IEEE PROCAMS (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Srinivasa G. Narasimhan
    • 1
  • Sanjeev J. Koppal
    • 1
  • Shuntaro Yamazaki
    • 2
  1. 1.The Robotics InstituteCarnegie Mellon UniversityUSA
  2. 2.National Institute of Advanced Industrial Science and TechnologyJapan

Personalised recommendations