Improving Shape Retrieval by Learning Graph Transduction

  • Xingwei Yang
  • Xiang Bai
  • Longin Jan Latecki
  • Zhuowen Tu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)


Shape retrieval/matching is a very important topic in computer vision. The recent progress in this domain has been mostly driven by designing smart features for providing better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the query shape in a graph structure. Our method is general and can be built on top of any existing shape matching algorithms. It learns a better metric through graph transduction by propagating the model through existing shapes, in a way similar to computing geodesics in shape manifold. However, the proposed method does not require learning the shape manifold explicitly and it does not require knowing any class labels of existing shapes. The presented experimental results demonstrate that the proposed approach yields significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91% on the MPEG-7 data set, which is the highest ever reported in the literature.


Dynamic Time Warping Retrieval Result Label Propagation Retrieval Rate Shape Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24, 705–522 (2002)Google Scholar
  2. 2.
    Tu, Z., Yuille, A.L.: Shape matching and recognition - using generative models and informative features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 195–209. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. PAMI 29, 286–299 (2007)Google Scholar
  4. 4.
    Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. PAMI 22(10), 1185–1190 (2000)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Schwartz, J.: Hierarchical matching of deformable shapes. In: CVPR (2007)Google Scholar
  6. 6.
    McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval. In: Proc. CVPR (2006)Google Scholar
  7. 7.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. PAMI 30, 1282–1292 (2008)Google Scholar
  8. 8.
    Srivastava, A., Joshi, S.H., Mio, W., Liu, X.: Statistic shape analysis: clustering, learning, and testing. IEEE Trans. PAMI 27, 590–602 (2005)Google Scholar
  9. 9.
    Zhu, X.: Semi-supervised learning with graphs. In: Doctoral Dissertation. Carnegie Mellon University, CMU–LTI–05–192 (2005)Google Scholar
  10. 10.
    Vleugels, J., Veltkamp, R.: Efficient image retrieval through vantage objects. Pattern Recognition 35(1), 69–80 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Latecki, L.J., Lakämper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: CVPR, pp. 424–429 (2000)Google Scholar
  12. 12.
    Brefeld, U., Buscher, C., Scheffer, T.: Multiview dicriminative sequential learning. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via gaussian processes. In: NIPS (2004)Google Scholar
  14. 14.
    Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML, pp. 200–209 (1999)Google Scholar
  15. 15.
    Zhu, X., Ghahramani, Z., Lafferty., J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML (2003)Google Scholar
  16. 16.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf., B.: Learning with local and global consistency. In: NIPS (2003)Google Scholar
  17. 17.
    Wang, F., Wang, J., Zhang, C., Shen., H.: Semi-supervised classification using linear neighborhood propagation. In: CVPR (2006)Google Scholar
  18. 18.
    Zhou, D., Weston, J.: Ranking on data manifolds. In: NIPS (2003)Google Scholar
  19. 19.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  20. 20.
    Fan, X., Qi, C., Liang, D., Huang, H.: Probabilistic contour extraction using hierarchical shape representation. In: Proc. ICCV, pp. 302–308 (2005)Google Scholar
  21. 21.
    Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation. IEEE Trans. PAMI 30, 451–462 (2008)Google Scholar
  22. 22.
    Xing, E., Ng, A., Jordanand, M., Russell, S.: Distance metric learning with application to clustering with side-information. In: NIPS, pp. 505–512 (2003)Google Scholar
  23. 23.
    Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations. In: ICML, pp. 11–18 (2003)Google Scholar
  24. 24.
    Athitsos, V., Alon, J., Sclaroff, S., Kollios, G.: Bootmap: A method for efficient approximate similarity rankings. In: CVPR (2004)Google Scholar
  25. 25.
    Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In: CVPR, pp. 570–577 (2004)Google Scholar
  26. 26.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS (2004)Google Scholar
  27. 27.
    Hein, M., Maier, M.: Manifold denoising. In: NIPS (2006)Google Scholar
  28. 28.
    Wang, J., Chang, S.F., Zhou, X., Wong, T.C.S.: Active microscopic cellular image annotation by superposable graph transduction with imbalanced labels. In: CVPR (2008)Google Scholar
  29. 29.
    Mokhtarian, F., Abbasi, F., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Smeulders, A.W.M., Jain, R. (eds.) Image Databases and Multi-Media Search, pp. 51–58 (1997)Google Scholar
  30. 30.
    Sebastian, T.B., Klein, P.N., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Trans. PAMI 25, 116–125 (2004)Google Scholar
  31. 31.
    Keogh, E.: UCR time series classification/clustering page,
  32. 32.
    Ratanamahatana, C.A., Keogh, E.: Three myths about dynamic time warping. In: SDM, pp. 506–510 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xingwei Yang
    • 1
  • Xiang Bai
    • 2
    • 3
  • Longin Jan Latecki
    • 1
  • Zhuowen Tu
    • 3
  1. 1.Dept. of Computer and Information SciencesTemple UniversityPhiladelphia 
  2. 2.Dept. of Electronics and Information EngineeringHuazhong University of Science and TechnologyP.R. China
  3. 3.Lab of Neuro ImagingUniversity of CaliforniaLos Angeles 

Personalised recommendations