Light-Efficient Photography

  • Samuel W. Hasinoff
  • Kiriakos N. Kutulakos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)


We consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by (1) collecting a sequence of photos and (2) controlling the aperture, focus and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously-variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.


Exposure Level Optimal Sequence Aperture Diameter Left Endpoint Capture Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-540-88693-8_4_MOESM1_ESM.avi (10.8 mb)
Supplementary material(11,056 KB)


  1. 1.
    Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. TPAMI 16(3), 267–276 (1994)Google Scholar
  2. 2.
    Hasinoff, S.W., Kutulakos, K.N.: A layer-based restoration framework for variable-aperture photography. In: ICCV (2007)Google Scholar
  3. 3.
    Pentland, A.P.: A new sense for depth of field. TPAMI 9(4), 523–531 (1987)Google Scholar
  4. 4.
    Krotkov, E.: Focusing. IJCV 1(3), 223–237 (1987)CrossRefGoogle Scholar
  5. 5.
    Hiura, S., Matsuyama, T.: Depth measurement by the multi-focus camera. In: CVPR, pp. 953–959 (1998)Google Scholar
  6. 6.
    Watanabe, M., Nayar, S.K.: Rational filters for passive depth from defocus. IJCV 27(3), 203–225 (1998)CrossRefGoogle Scholar
  7. 7.
    Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. In: SIGGRAPH, pp. 795–804 (2006)Google Scholar
  8. 8.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. In: SIGGRAPH (2007)Google Scholar
  9. 9.
    Telleen, J., Sullivan, A., Yee, J., Gunawardane, P., Wang, O., Collins, I., Davis, J.: Synthetic shutter speed imaging. In: Proc. Eurographics, pp. 591–598 (2007)Google Scholar
  10. 10.
    Farid, H., Simoncelli, E.P.: Range estimation by optical differentiation. JOSA A 15(7), 1777–1786 (1998)Google Scholar
  11. 11.
    Cathey, W.T., Dowski, E.R.: New paradigm for imaging systems. Applied Optics 41(29), 6080–6092 (2002)CrossRefGoogle Scholar
  12. 12.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. In: SIGGRAPH (2007)Google Scholar
  13. 13.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. In: SIGGRAPH (2007)Google Scholar
  14. 14.
    Aizawa, K., Kodama, K., Kubota, A.: Producing object-based special effects by fusing multiple differently focused images. In: TCSVT 10(2) (2000)Google Scholar
  15. 15.
    Chaudhuri, S.: Defocus morphing in real aperture images. JOSA A 22(11), 2357–2365 (2005)Google Scholar
  16. 16.
    Hasinoff, S.W., Kutulakos, K.N.: Confocal stereo. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 620–634. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Ng, R.: Fourier slice photography. In: SIGGRAPH, pp. 735–744 (2005)Google Scholar
  18. 18.
    Levoy, M., Ng, R., Adams, A., Footer, M., Horowitz, M.: Light field microscopy. In: SIGGRAPH, pp. 924–934 (2006)Google Scholar
  19. 19.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH, pp. 369–378 (1997)Google Scholar
  20. 20.
    Agarwala, A., et al.: Interactive digital photomontage. In: SIGGRAPH, pp. 294–302 (2004)Google Scholar
  21. 21.
    Smith, W.J.: Modern Optical Engineering, 3rd edn. McGraw-Hill, New York (2000)Google Scholar
  22. 22.
  23. 23.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  24. 24.
  25. 25.
    Willson, R., Shafer, S.: What is the center of the image? JOSA A 11(11), 2946–2955 (1994)CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Samuel W. Hasinoff
    • 1
  • Kiriakos N. Kutulakos
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Toronto 

Personalised recommendations