Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography

  • Le Lu
  • Adrian Barbu
  • Matthias Wolf
  • Jianming Liang
  • Luca Bogoni
  • Marcos Salganicoff
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)

Abstract

Object detection and recognition has achieved a significant progress in recent years. However robust 3D object detection and segmentation in noisy 3D data volumes remains a challenging problem. Localizing an object generally requires its spatial configuration (i.e., pose, size) being aligned with the trained object model, while estimation of an object’s spatial configuration is only valid at locations where the object appears. Detecting object while exhaustively searching its spatial parameters, is computationally prohibitive due to the high dimensionality of 3D search space. In this paper, we circumvent this computational complexity by proposing a novel framework capable of incrementally learning the object parameters (IPL) of location, pose and scale. This method is based on a sequence of binary encodings of the projected true positives from the original 3D object annotations (i.e., the projections of the global optima from the global space into the sections of subspaces). The training samples in each projected subspace are labeled as positive or negative, according their spatial registration distances towards annotations as ground-truth. Each encoding process can be considered as a general binary classification problem and is implemented using probabilistic boosting tree algorithm. We validate our approach with extensive experiments and performance evaluations for Ileo-Cecal Valve (ICV) detection in both clean and tagged 3D CT colonography scans. Our final ICV detection system also includes an optional prior learning procedure for IPL which further speeds up the detection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. In: ICCV (2005)Google Scholar
  2. 2.
    Geman, D., Jedynak, B.: An Active Testing Model for Tracking Roads in Satellite Images. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 1–14 (1996)CrossRefGoogle Scholar
  3. 3.
    Han, F., Tu, Z., Zhu, S.C.: Range Image Segmentation by an Effective Jump-Diffusion Method. IEEE Trans. PAMI 26(9) (2004)Google Scholar
  4. 4.
    Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. IEEE Trans. PAMI 29(4), 671–686 (2007)Google Scholar
  5. 5.
    Jerebko, A., Lakare, S., Cathier, P., Periaswamy, S., Bogoni, L.: Symmetric Curvature Patterns for Colonic Polyp Detection. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 169–176. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Jones, M., Viola, P.: Fast multi-view face detection. In: CVPR (2003)Google Scholar
  7. 7.
    Ke, Y., Sukthankar, R., Hebert, M.: Efficient Visual Event Detection using Volumetric Features. In: ICCV (2005)Google Scholar
  8. 8.
    Lu, L., Hager, G.: Dynamic Background/Foreground Segmentation From Images and Videos using Random Patches. In: NIPS (2006)Google Scholar
  9. 9.
    Rowley, H., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. In: CVPR (1996)Google Scholar
  10. 10.
    Rowley, H., Baluja, S., Kanade, T.: Rotation Invariant Neural Network-Based Face Detection. In: CVPR (1998)Google Scholar
  11. 11.
    Summers, R., Yao, J., Johnson, C., Colonography, C.T.: with Computer-Aided Detection: Automated Recognition of Ileocecal Valve to Reduce Number of False-Positive Detections. Radiology 233, 266–272 (2004)CrossRefGoogle Scholar
  12. 12.
    Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering. In: ICCV (2005)Google Scholar
  13. 13.
    Tu, Z., Zhou, X.S., Barbu, A., Bogoni, L., Comaniciu, D.: Probabilistic 3D polyp detection in CT images: The role of sample alignment. In: CVPR (2006)Google Scholar
  14. 14.
    Wu, B., Nevatia, R.: Cluster Boosted Tree Classifier for Multi-View, Multi-Pose Object Detection. In: ICCV (2007)Google Scholar
  15. 15.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, pp. 511–518 (2001)Google Scholar
  16. 16.
    Yao, J., Miller, M., Franaszek, M., Summers, R.: Colonic polyp segmentation in CT Colongraphy-based on fuzzy clustering and deformable models. IEEE Trans. on Medical Imaging (2004)Google Scholar
  17. 17.
    Yoshida, H., Dachman, A.H.: CAD techniques, challenges, and controversies in computed tomographic colonography. Abdominal Imaging 30(1), 26–41 (2005)CrossRefGoogle Scholar
  18. 18.
    Yuille, A.L., Coughlan, J.M.: Twenty Questions, Focus of Attention, and A*: A Theoretical Comparison of Optimization Strategies. In: Pelillo, M., Hancock, E.R. (eds.) EMMCVPR 1997. LNCS, vol. 1223, pp. 197–212. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal space Learning and Steerable Features. In: ICCV (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Le Lu
    • 1
    • 2
  • Adrian Barbu
    • 1
  • Matthias Wolf
    • 2
  • Jianming Liang
    • 2
  • Luca Bogoni
    • 2
  • Marcos Salganicoff
    • 2
  • Dorin Comaniciu
    • 1
  1. 1.Integrated Data Systems Dept.Siemens Corporate ResearchPrinceton
  2. 2.Computer Aided Diagnosis Group, Siemens Medical SolutionsMalvernUSA

Personalised recommendations