Advertisement

Texture-Consistent Shadow Removal

  • Feng Liu
  • Michael Gleicher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)

Abstract

This paper presents an approach to shadow removal that preserves texture consistency between the original shadow and lit area. Illumination reduction in the shadow area not only darkens that area, but also changes the texture characteristics there. We achieve texture-consistent shadow removal by constructing a shadow-free and texture-consistent gradient field. First, we estimate an illumination change surface which causes the shadow and remove the gradients it induces. We approximate the illumination change surface with illumination change splines across the shadow boundary. We formulate estimating these splines as an optimization problem which balances the smoothness between the neighboring splines and their fitness to the image data. Second, we sample the shadow effect on the texture characteristics in the umbra and lit area near the shadow boundary, and remove it by transforming the gradients inside the shadow area to be compatible with the lit area. Experiments on photos from Flickr demonstrate the effectiveness of our method.

Keywords

Texture Characteristic Sampling Line Illumination Change Shadow Area Shadow Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barrow, H., Tenenbaum, J.: Recovering intrinsic scene characteristics from images. In: Computer Vision Systems. Academic Press, London (1978)Google Scholar
  2. 2.
    Weiss, Y.: Deriving intrinsic images from image sequences. In: IEEE ICCV, pp. 68–75 (2001)Google Scholar
  3. 3.
    Arbel, E., Hel-Or, H.: Texture-preserving shadow removal in color images containing curved surfaces. In: IEEE CVPR (2007)Google Scholar
  4. 4.
    Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006)CrossRefGoogle Scholar
  5. 5.
    Liu, Z., Huang, K., Tan, T., Wang, L.: Cast shadow removal combining local and global features. In: The 7th International Workshop on Visual Surveillance (2007)Google Scholar
  6. 6.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing shadows from images. In: 7th European Conference on Computer Vision, pp. 823–836 (2002)Google Scholar
  7. 7.
    Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Underst. 95(2), 238–259 (2004)CrossRefGoogle Scholar
  8. 8.
    Levine, M.D., Bhattacharyya, J.: Removing shadows. Pattern Recognition Letters 26(3), 251–265 (2005)CrossRefGoogle Scholar
  9. 9.
    Wu, T.P., Tang, C.K., Brown, M.S., Shum, H.Y.: Natural shadow matting. ACM Trans. Graph. 26(2), 8 (2007)CrossRefGoogle Scholar
  10. 10.
    Mohan, A., Tumblin, J., Choudhury, P.: Editing soft shadows in a digital photograph. IEEE Comput. Graph. Appl. 27(2), 23–31 (2007)CrossRefGoogle Scholar
  11. 11.
    Baba, M., Mukunoki, M., Asada, N.: Shadow removal from a real image based on shadow density. ACM SIGGRAPH 2004 Posters, 60 (2004)Google Scholar
  12. 12.
    Fredembach, C., Finlayson, G.D.: Hamiltonian path based shadow removal. In: BMVC, pp. 970–980 (2005)Google Scholar
  13. 13.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)CrossRefGoogle Scholar
  14. 14.
    Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)Google Scholar
  15. 15.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Feng Liu
    • 1
  • Michael Gleicher
    • 1
  1. 1.Computer Sciences DepartmentUniversity of Wisconsin-Madison 

Personalised recommendations