Automated Delineation of Dendritic Networks in Noisy Image Stacks

  • Germán González
  • François Fleuret
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5305)


We present a novel approach to 3D delineation of dendritic networks in noisy image stacks. We achieve a level of automation beyond that of state-of-the-art systems, which model dendrites as continuous tubular structures and postulate simple appearance models. Instead, we learn models from the data itself, which make them better suited to handle noise and deviations from expected appearance.

From very little expert-labeled ground truth, we train both a classifier to recognize individual dendrite voxels and a density model to classify segments connecting pairs of points as dendrite-like or not. Given these models, we can then trace the dendritic trees of neurons automatically by enforcing the tree structure of the resulting graph. We will show that our approach performs better than traditional techniques on brighfield image stacks.


Gaussian Mixture Model Minimum Span Tree Appearance Model Dendritic Tree Weak Learner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G., Turner, J., Roysam, B.: Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine (2002)Google Scholar
  2. 2.
    Tyrrell, J., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R., Roysam, B.: Robust 3-d modeling of vasculature imagery using superellipsoids. Medical Imaging 26(2), 223–237 (2007)CrossRefGoogle Scholar
  3. 3.
    Kirbas, C., Quek, F.: Vessel extraction techniques and algorithms: A survey. In: Proceedings of the Third IEEE Symposium on BioInformatics and BioEngineering, p. 238 (2003)Google Scholar
  4. 4.
    Krissian, K., Kikinis, R., Westin, C.F.: Algorithms for extracting vessel centerlines. Technical Report 0003, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Laboratory of Mathematics in Imaging (September 2004)Google Scholar
  5. 5.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 2, 143–168 (1998)CrossRefGoogle Scholar
  6. 6.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Streekstra, G., van Pelt, J.: Analysis of tubular structures in three-dimensional confocal images. Network: Computation in Neural Systems 13(3), 381–395 (2002)CrossRefGoogle Scholar
  8. 8.
    Meijering, E., Jacob, M., Sarria, J.C.F., Steiner, P., Hirling, H., Unser, M.: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A 58A(2), 167–176 (2004)CrossRefGoogle Scholar
  9. 9.
    Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: Proceedings of the 2005 IEEE International Conference on Image Processing (ICIP 2005), Genova, Italy, September 11-14, 2005, vol. II, pp. 1158–1161 (2005)Google Scholar
  10. 10.
    Dima, A., Scholz, M., Obermayer, K.: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-d wavelet transform. IEEE Transaction on Image Processing 7, 790–801 (2002)CrossRefGoogle Scholar
  11. 11.
    Schmitt, S., Evers, J.F., Duch, C., Scholz, M., Obermayer, K.: New methods for the computer-assisted 3d reconstruction of neurons from confocal image stacks. NeuroImage 23, 1283–1298 (2004)CrossRefGoogle Scholar
  12. 12.
    Agam, G., Wu, C.: Probabilistic modeling-based vessel enhancement in thoracic ct scans. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 684–689. IEEE Computer Society, Washington (2005)Google Scholar
  13. 13.
    Santamaría-Pang, A., Colbert, C.M., Saggau, P., Kakadiaris, I.A.: Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 486–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Al-Kofahi, K.A., Can, A., Lasek, S., Szarowski, D.H., Dowell-Mesfin, N., Shain, W., Turner, J.N., et al.: Median-based robust algorithms for tracing neurons from noisy confocal microscope images (December 2003)Google Scholar
  15. 15.
    Flasque, N., Desvignes, M., Constans, J., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3d magnetic resonance angiography images. Medical Image Analysis 5(3), 173–183 (2001)CrossRefGoogle Scholar
  16. 16.
    McIntosh, C., Hamarneh, G.: Vessel crawlers: 3d physically-based deformable organisms for vasculature segmentation and analysis. In: CVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1084–1091. IEEE Computer Society Press, Washington (2006)Google Scholar
  17. 17.
    Szymczak, A., Stillman, A., Tannenbaum, A., Mischaikow, K.: Coronary vessel trees from 3d imagery: a topological approach. Medical Image Analisys (08 2006)Google Scholar
  18. 18.
    Freund, Y., Schapire, R.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, San Francisco (1996)Google Scholar
  19. 19.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23, 501–509 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Germán González
    • 1
  • François Fleuret
    • 2
  • Pascal Fua
    • 1
  1. 1.Ecole Polytechnique Fédérale de Lausanne, Computer Vision LaboratoryBâtiment BCSwitzerland
  2. 2.IDIAP Research InstituteMartignySwitzerland

Personalised recommendations