Advertisement

Vision-Based Multiple Interacting Targets Tracking via On-Line Supervised Learning

  • Xuan Song
  • Jinshi Cui
  • Hongbin Zha
  • Huijing Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5304)

Abstract

Successful multi-target tracking requires locating the targets and labeling their identities. This mission becomes significantly more challenging when many targets frequently interact with each other (present partial or complete occlusions). This paper presents an on-line supervised learning based method for tracking multiple interacting targets. When the targets do not interact with each other, multiple independent trackers are employed for training a classifier for each target. When the targets are in close proximity or present occlusions, the learned classifiers are used to assist in tracking. The tracking and learning supplement each other in the proposed method, which not only deals with tough problems encountered in multi-target tracking, but also ensures the entire process to be completely on-line. Various evaluations have demonstrated that this method performs better than previous methods when the interactions occur, and can maintain the correct tracking under various complex tracking situations, including crossovers, collisions and occlusions.

Keywords

Target Tracking Image Patch Data Association Tracking Result Continuous Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-540-88690-7_48_MOESM1_ESM.wmv (9.8 mb)
Supplementary material (10,043 KB)

References

  1. 1.
    Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29, 261–271 (2007)CrossRefGoogle Scholar
  2. 2.
    Le, L., Gregory, D.: A nonparametric treatment for location/segmentation based visual tracking. In: Proc. IEEE CVPR, pp. 261–268 (2007)Google Scholar
  3. 3.
    Bar-Shalom, Y., Fortmann, T.E.: Tracking and data association. Academic Press, New York (1998)zbMATHGoogle Scholar
  4. 4.
    Okuma, K., Taleghani, A., Freitas, N.D., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Vermaak, J., Doucet, A., Perez, P.: Maintaining multi-modality through mixture tracking. In: Proc. IEEE ICCV, pp. 1110–1116 (2003)Google Scholar
  6. 6.
    Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. IEEE Trans. PAMI 7, 1208–1221 (2004)CrossRefGoogle Scholar
  7. 7.
    Rasmussen, C., Hager, G.: Probabilistic data association methods for tracking complex visual objects. IEEE Trans. PAMI 23, 560–576 (2001)CrossRefGoogle Scholar
  8. 8.
    Gennari, G., Hager, G.: Probabilistic data association methods in visual tracking of groups. In: Proc. IEEE CVPR, pp. 876–881 (2004)Google Scholar
  9. 9.
    Vermaak, J., Godsill, S.J., Perez, P.: Monte carlo filtering for multi target tracking and data association. IEEE Trans. Aerospace and Electronic Systems 41, 309–332 (2005)CrossRefGoogle Scholar
  10. 10.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.: People tracking with a mobile robot using sample-based joint probabilistic data association filters. International Journal of Robotics Research 22, 99–116 (2003)CrossRefGoogle Scholar
  11. 11.
    Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple target tracking problems. In: Proc. IEEE Conf. Decision and Control, pp. 735–742 (2004)Google Scholar
  12. 12.
    Khan, Z., Balch, T., Dellaert, F.: Mcmc data association and sparse factorization updating for real time multitarget tracking with merged and multiple measurements. IEEE Trans. PAMI 28, 1960–1972 (2006)CrossRefGoogle Scholar
  13. 13.
    Yu, Q., Medioni, G., Cohen, I.: Multiple target tracking using spatio-temporal markov chain monte carlo data association. In: Proc. IEEE CVPR, pp. 642–649 (2007)Google Scholar
  14. 14.
    Cai, Y., Freitas, N.D., Little, J.J.: Robust visual tracking for multiple targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 125–135. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Khan, Z., Balch, T., Dellaert, F.: Mcmc-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. PAMI 27, 1805–1819 (2005)CrossRefGoogle Scholar
  16. 16.
    Qu, W., Schonfeld, D., Mohamed, M.: Real-time interactively distributed multi-object tracking using a magnetic-inertia potential model. In: Proc. IEEE ICCV, pp. 535–540 (2005)Google Scholar
  17. 17.
    Lanz, O., Manduchi, R.: Hybrid joint-separable multibody tracking. In: Proc. IEEE CVPR, pp. 413–420 (2005)Google Scholar
  18. 18.
    Sullivan, J., Carlsson, S.: Tracking and labeling of interacting multiple targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 661–675. Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: Proc. IEEE CVPR, pp. 2187–2194 (2006)Google Scholar
  20. 20.
    Li, Y., Ai, H.Z., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life-spans. In: Proc. IEEE CVPR, pp. 1–8 (2007)Google Scholar
  21. 21.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. IEEE CVPR, pp. 260–267 (2006)Google Scholar
  22. 22.
    Zhe, L., Larry, S.D., David, D., Daniel, D.: Hierarchical part-template matching for human detection and segmentation. In: Proc. IEEE ICCV, pp. 351–358 (2007)Google Scholar
  23. 23.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proc. IEEE CVPR, pp. 661–668 (2005)Google Scholar
  24. 24.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE ICCV, pp. 37–63 (1999)Google Scholar
  25. 25.
    Davis, J., Sharma, V.: Fusion-based background-subtraction using contour saliency. In: Proc. IEEE CVPR, pp. 20–26 (2005)Google Scholar
  26. 26.
    Comaniciu, D., Visvanathan, R., Meer, P.: Kernel-based object tracking. IEEE Trans. PAMI 25, 564–575 (2003)CrossRefGoogle Scholar
  27. 27.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. IEEE CVPR, pp. 142–149 (2000)Google Scholar
  28. 28.
    Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. International Journal of Computer Vision 28, 5–28 (1998)CrossRefGoogle Scholar
  29. 29.
    Perez, P., Hue, C., Vermaak, J.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Lu, L., Hager, G.: Dynamic foreground/background extraction from images and videos using random patches. In: Proc. NIPS, pp. 351–358 (2006)Google Scholar
  31. 31.
    Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and regression trees. Wadsworth, Chapman Hall, New York (1984)zbMATHGoogle Scholar
  32. 32.
    Doucet, A., Godsill, S.J., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing 10, 197–208 (2000)CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Davis, J., Sharma, V.: Otcbvs benchmark dataset 03, http://www.cse.ohio-state.edu/otcbvs-bench/
  35. 35.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xuan Song
    • 1
  • Jinshi Cui
    • 1
  • Hongbin Zha
    • 1
  • Huijing Zhao
    • 1
  1. 1.Key Laboratory of Machine Perception (Ministry of Education)Peking UniversityChina

Personalised recommendations