The Bi-directional Framework for Unifying Parametric Image Alignment Approaches

  • Rémi Mégret
  • Jean-Baptiste Authesserre
  • Yannick Berthoumieu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5304)


In this paper, a generic bi-directional framework is proposed for parametric image alignment, that extends the classification of [1]. Four main categories (Forward, Inverse, Dependent and Bi-directional) form the basis of a consistent set of subclasses, onto which state-of-the-art methods have been mapped. New formulations for the ESM [2] and the Inverse Additive [3] algorithms are proposed, that show the ability of this framework to unify existing approaches. New explicit equivalence relationships are given for the case of first-order optimization that provide some insights into the choice of an update rule in iterative algorithms.


Image Alignment Inverse Additive Reference Coordinate Frame Inverse Compositional Forward Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, S., Matthews, I.: Lucas-Kanade 20 years on: A unifying framework. International Journal of Computer Vision 56(3), 221–255 (2004)CrossRefGoogle Scholar
  2. 2.
    Benhimane, S., Malis, E.: Real-time image-based tracking of planes using efficient second-order minimization. In: IROS 2004, Sendai, Japan, vol. 1, pp. 943–948 (2004)Google Scholar
  3. 3.
    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(10), 1025–1039 (1998)CrossRefGoogle Scholar
  4. 4.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981, pp. 674–679 (1981)Google Scholar
  5. 5.
    Keller, Y., Averbuch, A.: Fast motion estimation using bi-directional gradient methods. IEEE Transactions on Image Processing 13(8), 1042–1054 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baker, S., Gross, R., Matthews, I., Ishikawa, T.: Lucas-Kanade 20 years on: A unifying framework: Part 2. Technical Report CMU-RI-TR-03-01, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (February 2003)Google Scholar
  7. 7.
    Mégret, R., Mikram, M., Berthoumieu, Y.: Inverse composition for multi-kernel tracking. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 480–491. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Keller, Y., Averbuch, A.: Global parametric image alignment via high-order approximation. Computer Vision and Image Understanding 109(3), 244–259 (2008)CrossRefGoogle Scholar
  9. 9.
    Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)CrossRefGoogle Scholar
  10. 10.
    Shum, H.Y., Szeliski, R.: Construction of panoramic image mosaics with global and local alignment. International Journal of Computer Vision 36(2), 101–130 (2000)CrossRefGoogle Scholar
  11. 11.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)CrossRefGoogle Scholar
  12. 12.
    Bartoli, A.: Groupwise geometric and photometric direct image registration. IEEE Transactions on Pattern Analysis and Machine Intelligence (2008) preprint (January 14, 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rémi Mégret
    • 1
  • Jean-Baptiste Authesserre
    • 1
  • Yannick Berthoumieu
    • 1
  1. 1.IMS LaboratoryUniversity of BordeauxFrance

Personalised recommendations