Advertisement

A Lattice-Preserving Multigrid Method for Solving the Inhomogeneous Poisson Equations Used in Image Analysis

  • Leo Grady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)

Abstract

The inhomogeneous Poisson (Laplace) equation with internal Dirichlet boundary conditions has recently appeared in several applications ranging from image segmentation [1, 2, 3] to image colorization [4], digital photo matting [5, 6] and image filtering [7, 8]. In addition, the problem we address may also be considered as the generalized eigenvector problem associated with Normalized Cuts [9], the linearized anisotropic diffusion problem [10, 11, 8] solved with a backward Euler method, visual surface reconstruction with discontinuities [12, 13] or optical flow [14]. Although these approaches have demonstrated quality results, the computational burden of finding a solution requires an efficient solver. Design of an efficient multigrid solver is difficult for these problems due to unpredictable inhomogeneity in the equation coefficients and internal Dirichlet boundary conditions with unpredictable location and value. Previous approaches to multigrid solvers have typically employed either a data-driven operator (with fast convergence) or the maintenance of a lattice structure at coarse levels (with low memory overhead). In addition to memory efficiency, a lattice structure at coarse levels is also essential to taking advantage of the power of a GPU implementation [15,16,5,3]. In this work, we present a multigrid method that maintains the low memory overhead (and GPU suitability) associated with a regular lattice while benefiting from the fast convergence of a data-driven coarse operator.

Keywords

Diffusion Constant Multigrid Method Coarse Level Laplacian Matrix Bilinear Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. on Pat. Anal. and Mach. Intel. 28(3), 469–475 (2006)CrossRefGoogle Scholar
  2. 2.
    Grady, L.: Random walks for image segmentation. IEEE Trans. on Pat. Anal. and Mach. Intel., 1768–1783 (November 2006)Google Scholar
  3. 3.
    Bhusnurmath, A.: Applying Convex Minimization Techniques to Energy Minimization Problems in Computer Vision. Ph.D thesis, U. Pennsylvania (2008)Google Scholar
  4. 4.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: Proc. of SIGGRAPH, vol. 23, pp. 689–694. ACM, New York (2004)Google Scholar
  5. 5.
    Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive alpha-matting. In: Proc. of VIIP, pp. 423–429. ACTA Press (September 2005)Google Scholar
  6. 6.
    Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In: Proc. of CVPR 2006, New York (June 2006)Google Scholar
  7. 7.
    Grady, L., Schwartz, E.: Anisotropic interpolation on graphs: The combinatorial Dirichlet problem. Technical Report CNS-TR-03-014, Boston University (2003)Google Scholar
  8. 8.
    Zhang, F., Hancock, E.R.: Graph spectral image smoothing. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 191–203. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on Pat. Anal. and Mach. Intel., 888–905 (August 2000)Google Scholar
  10. 10.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pat. Anal. and Mach. Intel. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  11. 11.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of CGIT, pp. 317–324 (August 1999)Google Scholar
  12. 12.
    Terzopoulos, D.: The computation of visible-surface representations. IEEE Trans. on Pat. Anal. and Mach. Intel. 10(4), 417–438 (1988)CrossRefzbMATHGoogle Scholar
  13. 13.
    Szeliski, R., Terzopoulos, D.: Parallel multigrid algorithms and computer vision applications. In: Mandel, J., et al. (eds.) Proc. of the Fourth Copper Mountain Conf. on Multigrid Methods, pp. 383–398. SIAM, Philadelphia (1989)Google Scholar
  14. 14.
    Ghosal, S., Vanĕk, P.: A fast scalable algorithm for discontinuous optical flow estimation. IEEE Trans. on Pat. Anal. and Mach. Intel. 18(2), 181–194 (1996)CrossRefGoogle Scholar
  15. 15.
    Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. on Graphics, 917–924 (July 2003)Google Scholar
  16. 16.
    Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. on Graphics, 908–916 (July 2003)Google Scholar
  17. 17.
    Sapiro, G.: Inpainting the colors. Technical Report IMA Preprint Series #1979, University of Minnesota, Institute for Mathematics and its Applications (2004)Google Scholar
  18. 18.
    Briggs, W.L., Hensen, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, San Diego (2000)zbMATHGoogle Scholar
  20. 20.
    Wesseling, P.: An Introduction to Multigrid Methods. R.T. Edwards (2004)Google Scholar
  21. 21.
    Dendy, J.E.: Black box multigrid. J. of Computational Physics 48, 366–386 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19, 23–56 (1986)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gidas, B.: A renormalization group approach to image processing problems. IEEE Trans. on Pat. Anal. and Mach. Intel. 11(2), 164–180 (1989)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pérez, P., Heitz, F.: Restriction of a Markov random field on a graph and multiresolution statistical image modeling. IEEE Trans. on IT 42(1), 180–190 (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. on Comm. COM-31(4), 532–540 (1983)CrossRefGoogle Scholar
  26. 26.
    Terzopoulos, D.: Multilevel computational processes for visual surface reconstruction. Comput. Vision, Graphics, and Image Processing 24, 52–96 (1983)CrossRefGoogle Scholar
  27. 27.
    Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE Trans. on Pat. Anal. and Mach. Intel. 8(2), 129–139 (1986)CrossRefGoogle Scholar
  28. 28.
    Acton, S.T.: Multigrid anisotropic diffusion. IEEE Trans. on Image Proc. 7(3), 280–291 (1998)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ruge, J., Stüben, K.: Algebraic multigrid. In: McCormick, S. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)CrossRefGoogle Scholar
  30. 30.
    Kimmel, R., Yavneh, I.: An algebraic multigrid approach for image analysis. SIAM J. of Sci. Comput. 24(4), 1218–1231 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Grady, L., Tasdizen, T.: A geometric multigrid approach to solving the 2D inhomogeneous Laplace equation with internal boundary conditions. In: Proc. of ICIP 2005, vol. 2, pp. 642–645. IEEE, Los Alamitos (2005)Google Scholar
  32. 32.
    Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. of ICCV 2001, pp. 105–112 (2001)Google Scholar
  33. 33.
    Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. on Image Proc. 7(3), 421–432 (1998)CrossRefGoogle Scholar
  34. 34.
    Biggs, N.: Algebraic Graph Theory. Cambridge Tracts in Mathematics, vol. 67. Cambridge University Press, Cambridge (1974)CrossRefzbMATHGoogle Scholar
  35. 35.
    Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1993)zbMATHGoogle Scholar
  36. 36.
    Brandt, A., Mikulinksy, V.: On recombining iterants in multigrid algorithms and problems with small islands. SIAM J. of Sci. Comput. (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Leo Grady
    • 1
  1. 1.Department of Imaging and VisualizationSiemens Corporate ResearchPrinceton

Personalised recommendations