Advertisement

Fast and Accurate Rotation Estimation on the 2-Sphere without Correspondences

  • Janis Fehr
  • Marco Reisert
  • Hans Burkhardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)

Abstract

We present a refined method for rotation estimation of signals on the 2-Sphere. Our approach utilizes a fast correlation in the harmonic domain to estimate rotation angles of arbitrary size and resolution. The method is able to achieve great accuracy even for very low spherical harmonic expansions of the input signals without using correspondences or any other kind of a priori information. The rotation parameters are computed analytically without additional iterative post-processing or “fine tuning”.

The theoretical advances presented in this paper can be applied to a wide range of practical problems such as: shape description and shape retrieval, 3D rigid registration, robot positioning with omni-directional cameras or 3D invariant feature design.

Keywords

Rotation Parameter Shape Retrieval Spherical Image Rotation Estimation Sinc Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Shape Modeling International, Genova, Italy (2004)Google Scholar
  2. 2.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Symposium on Geometry Processing (2003)Google Scholar
  3. 3.
    Saupe, D., Vranic, D.V.: 3d model retrieval with spherical harmonics and moments. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 392–397. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Vranic, D.V.: An improvement of rotation invariant 3d shape descriptor based on functions on concentric spheres. In: IEEE International Conference on Image Processing (ICIP 2003), vol. 3, pp. 757–760 (2003)Google Scholar
  5. 5.
    Ronneberger, O., Fehr, J.: Voxel-wise gray scale invariants for simultaneous segmentation and classification. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 85–92. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Makadia, A., Daniilidis, K.: Rotation recovery from spherical images without correspondencesameesh. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2006)Google Scholar
  7. 7.
    Makadia, A., Sorgi, L., Daniilidis, K.: Rotation estimation from spherical images. In: International Conference on Pattern Recognition, Cambridge (2004)Google Scholar
  8. 8.
    Makadia, A., Daniilidis, K.: Direct 3d-rotation estimation from spherical images via a generalized shift theorem. In: IEEE Conference on Computer Vision and Pattern Recognition, Madison (2003)Google Scholar
  9. 9.
    Brink, D., Satchler, G.: Angular Momentum, 2nd edn. Clarendon Press, Oxford (1968)zbMATHGoogle Scholar
  10. 10.
    Burel, G., Henoco, H.: Determination of the orientation of 3d objects using spherical harmonics. Graph. Models Image Process. 57, 400–408 (1995)CrossRefGoogle Scholar
  11. 11.
    Crowther, R.A.: The molecular replacement method. In: Rossmann, M. (ed.) Gordon and Breach, New York, pp. 173–178 (1972)Google Scholar
  12. 12.
    Kovacs, J.A., Wriggers, W.: Fast rotational matching. Acta Crystallogr (58), 1282–1286 (2002)Google Scholar
  13. 13.
    Healy Jr., D., Rockmore, D., Kostelec, P., Moore, S.: Ffts for the 2-sphere - improvements and variations. The Journal of Fourier Analysis and Applications 9, 341–385 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Yaroslavsky, L.: Boundary effect free and adaptive discrete signal sinc-interpolation algorithms for signal and image resampling. Appl. Opt. 42, 4166–4175 (2003)CrossRefGoogle Scholar
  16. 16.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93, 216–231 (2005); special issue on Program Generation, Optimization, and Platform Adaptation CrossRefGoogle Scholar
  17. 17.
    Trapani, S., Navaza, J.: Calculation of spherical harmonics and wigner d functions by fft. applications to fast rotational matching in molecular replacement and implementation into amore. Acta Crystallogr, 262–269 (2006)Google Scholar
  18. 18.
    Reisert, M., Burkhardt, H.: Irreducible group representation for 3d shape description. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 132–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Janis Fehr
    • 1
  • Marco Reisert
    • 1
  • Hans Burkhardt
    • 1
  1. 1.Chair of Pattern Recognition and Image Processing Institute for Computer ScienceAlbert-Ludwigs-UniversityFreiburgGermany

Personalised recommendations