Regularized Partial Matching of Rigid Shapes

  • Alexander M. Bronstein
  • Michael M. Bronstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5303)


Matching of rigid shapes is an important problem in numerous applications across the boundary of computer vision, pattern recognition and computer graphics communities. A particularly challenging setting of this problem is partial matching, where the two shapes are dissimilar in general, but have significant similar parts. In this paper, we show a rigorous approach allowing to find matching parts of rigid shapes with controllable size and regularity. The regularity term we use is similar to the spirit of the Mumford-Shah functional, extended to non-Euclidean spaces. Numerical experiments show that the regularized partial matching produces better results compared to the non-regularized one.


Hausdorff Distance Iterative Close Point Rigid Motion Partial Match Boundary Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38, 2365–2385 (1998)CrossRefGoogle Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. PAMI 14, 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Boiman, O., Irani, M.: Similarity by composition. In: Proc. NIPS (2006)Google Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Paretian similarity of non-rigid objects. In: Proc. SSVM, pp. 264–275 (2007)Google Scholar
  5. 5.
    Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proc. Conf. Robotics and Automation (1991)Google Scholar
  7. 7.
    Funkhouser, T., Shilane, P.: Partial matching of 3D shapes with priority-driven search. In: Proc. SGP (2006)Google Scholar
  8. 8.
    Gelfand, N., Mitra, N.J., Guibas, L., Pottmann, H.: Robust global registration. In: Proc. Symp. Geometry Processing (SGP) (2005)Google Scholar
  9. 9.
    Jacobs, D., Weinshall, D., Gdalyahu, Y.: Class representation and image retrieval with non-metric distances. Trans. PAMI 22, 583–600 (2000)CrossRefGoogle Scholar
  10. 10.
    Kupeev, K., Wolfson, H.: On shape similarity. In: Proc. ICPR, pp. 227–237 (1994)Google Scholar
  11. 11.
    Latecki, L.J., Lakaemper, R., Wolter, D.: Optimal Partial Shape Similarity. Image and Vision Computing 23, 227–236 (2005)CrossRefGoogle Scholar
  12. 12.
    Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proc. Eurographics Symposium on Geometry Processing, pp. 23–32 (2004)Google Scholar
  13. 13.
    Mumford, D., Shah, J.: Boundary Detection by Minimizing Functionals. Image Understanding (1990)Google Scholar
  14. 14.
    Nocedal, J., Wright, S.: Numerical optimization. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pentland, A.: Recognition by parts. In: Proc. ICCV, pp. 612–620 (1987)Google Scholar
  16. 16.
    Siddiqi, K., Kimia, B.: A shock grammar for recognition. In: Proc. CVPR, pp. 507–513 (1996)Google Scholar
  17. 17.
    Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. In: Proc. Shape Modeling and Applications, pp. 145–156 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander M. Bronstein
    • 1
  • Michael M. Bronstein
    • 1
  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations