Building a Compact Relevant Sample Coverage for Relevance Feedback in Content-Based Image Retrieval

  • Bangpeng Yao
  • Haizhou Ai
  • Shihong Lao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)


Conventional approaches to relevance feedback in content-based image retrieval are based on the assumption that relevant images are physically close to the query image, or the query regions can be identified by a set of clustering centers. However, semantically related images are often scattered across the visual space. It is not always reliable that the refined query point or the clustering centers are capable of representing a complex query region.

In this work, we propose a novel relevance feedback approach which directly aims at extracting a set of samples to represent the query region, regardless of its underlying shape. The sample set extracted by our method is competent as well as compact for subsequent retrieval. Moreover, we integrate feature re-weighting in the process to estimate the importance of each image descriptor. Unlike most existing relevance feedback approaches in which all query points share a same feature weight distribution, our method re-weights the feature importance for each relevant image respectively, so that the representative and discriminative ability for all the images can be maximized. Experimental results on two databases show the effectiveness of our approach.


Local Binary Pattern Relevance Feedback Query Point Query Expansion Relevance Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rui, Y., Huang, T., Chang, S.: Image retrieval: Current techniques, promising directions, and open issues. J. Vis. Commun. Image R 10(4), 39–62 (1999)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high level semantics. Pattern Recogn. 40, 262–282 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An ontology approach to object-based image retrieval. In: ICIP, vol. 2, pp. 511–514 (2003)Google Scholar
  4. 4.
    Jin, W., Shi, R., Chua, T.S.: A semi-naïve bayesian method incorporating clustering with pair-wise constraints for auto image annotation. In: ACMMM (2004)Google Scholar
  5. 5.
    Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: ACMMM, pp. 107–118 (2001)Google Scholar
  6. 6.
    Rui, Y., Huang, T., Mehrotra, S.: Content-based image retrieval with relevance feedback in mars. In: ICIP, vol. 2, pp. 815–818 (1997)Google Scholar
  7. 7.
    Ishikawa, Y., Subramanya, R., Faloutsos, C.: Mindreader: Querying databases through multiple examples. In: VLDB, pp. 208–217 (1998)Google Scholar
  8. 8.
    Porkaew, K., Chakrabarti, K.: Query refinement for multimedia similarity retrieval in mars. In: ACMMM, pp. 235–238 (1999)Google Scholar
  9. 9.
    Kim, D.H., Chung, C.W.: Qcluster: Relevance feedback using adaptive clustering for content-based image retrieval. In: SIGMOD, pp. 599–610 (2003)Google Scholar
  10. 10.
    Su, Z., Zhang, H., Li, S., Ma, S.: Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning. IEEE T. Image Process 12(8), 924–937 (2003)CrossRefGoogle Scholar
  11. 11.
    Sahbi, H., Audibert, J.Y., Keriven, R.: Graph-cut transducers for relevance feedback in content-based image retrieval. In: ICCV (2007)Google Scholar
  12. 12.
    Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape-based image retrieval and classification. In: ICCV (2007)Google Scholar
  13. 13.
    Bray, N.: Dominating set. In: Weisstein, E.W. (ed.) From MathWorld - A Wolfram Web Resource,
  14. 14.
    Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Racine, K., Yang, Q.: Maintaining unstructured case bases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 553–564. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. University of Massachusetts, Amherst, Technical Report 07-49 (October 2007)Google Scholar
  18. 18.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from new training examples: An incremental bayesian approach tested on 101 object categories. In: WGMBV (2004)Google Scholar
  19. 19.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bangpeng Yao
    • 1
  • Haizhou Ai
    • 1
  • Shihong Lao
    • 2
  1. 1.Computer Science & Technology DepartmentTsinghua UniversityBeijingChina
  2. 2.Sensing & Control Technology LaboratoryOmron CorporationKyotoJapan

Personalised recommendations