Advertisement

Robust Multiple Structures Estimation with J-Linkage

  • Roberto Toldo
  • Andrea Fusiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)

Abstract

This paper tackles the problem of fitting multiple instances of a model to data corrupted by noise and outliers. The proposed solution is based on random sampling and conceptual data representation. Each point is represented with the characteristic function of the set of random models that fit the point. A tailored agglomerative clustering, called J-linkage, is used to group points belonging to the same model. The method does not require prior specification of the number of models, nor it necessitate parameters tuning. Experimental results demonstrate the superior performances of the algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stewart, C.V.: Bias in robust estimation caused by discontinuities and multiple structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(8), 818–833 (1997)CrossRefGoogle Scholar
  2. 2.
    Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its application to detect planar homographies. In: Proceedings of the IEEE International Conference on Image Processing, Genova, IT, September 11-14 (2005)Google Scholar
  3. 3.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Subbarao, R., Meer, P.: Nonlinear mean shift for clustering over analytic manifolds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, York, USA, pp. 1168–1175 (2006)Google Scholar
  5. 5.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  6. 6.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (gpca). IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1945–1959 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhang, W., Kosecká, J.: Nonparametric estimation of multiple structures with outliers. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2006. LNCS, vol. 4358, pp. 60–74. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Duin, R., Pekalska, E., Paclik, P., Tax, D.: The dissimilarity representation, a basis for domain based pattern recognition? In: Goldfarb, L. (ed.) Pattern representation and the future of pattern recognition, ICPR 2004 Workshop Proceedings, Cambridge, UK, pp. 43–56 (2004)Google Scholar
  9. 9.
    Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo using distributions of feature points. In: British Machine Vision Conference, pp. 247–256 (2004)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, pp. 98–105. John Wiley and Sons, Chichester (1973)zbMATHGoogle Scholar
  11. 11.
    Farenzena, M., Fusiello, A., Gherardi, R.: Efficient Visualization of Architectural Models from a Structure and Motion Pipeline. In: Eurographics 2008 - Short Papers, Crete, Greece, Eurographics Association, pp. 91–94 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Toldo
    • 1
  • Andrea Fusiello
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations