Advertisement

Tracking of Abrupt Motion Using Wang-Landau Monte Carlo Estimation

  • Junseok Kwon
  • Kyoung Mu Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)

Abstract

We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo sampling method which efficiently deals with the abrupt motions. Abrupt motions could cause conventional tracking methods to fail since they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau algorithm that has been recently proposed in statistical physics, and integrate this algorithm into the Markov Chain Monte Carlo based tracking method. Our tracking method alleviates the motion smoothness constraint utilizing both the likelihood term and the density of states term, which is estimated by the Wang-Landau algorithm. The likelihood term helps to improve the accuracy in tracking smooth motions, while the density of states term captures abrupt motions robustly. Experimental results reveal that our approach efficiently samples the object’s states even in a whole state space without loss of time. Therefore, it tracks the object of which motion is drastically changing, accurately and robustly.

Keywords

Markov Chain Monte Carlo Tracking Method Acceptance Ratio Metropolis Hastings Proposal Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-3-540-88682-2_30_MOESM1_ESM.wmv (24.6 mb)
Supplementary material (25,231 KB)

References

  1. 1.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (2006)Google Scholar
  2. 2.
    Cai, Y., de Freitas, N., Little, J.: Robust visual tracking for multiple targets. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 107–118. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Isard, M., Blake, A.: Icondensation: Unifying low-level and high-level tracking in a stochastic framework. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Khan, Z., Balch, T., Dellaert, F.: An mcmc-based particle filter for tracking multiple interacting targets. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 279–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Smith, K., Perez, D.G., Odobez, J.: Using particles to track varying numbers of interacting people. In: CVPR (2005)Google Scholar
  6. 6.
    Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: CVPR (2004)Google Scholar
  7. 7.
    Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV 75(2), 247–266 (2007)CrossRefGoogle Scholar
  8. 8.
    Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking: Linking identities using bayesian network inference. In: CVPR (2006)Google Scholar
  9. 9.
    Jepson, A., Fleet, D., Maraghi, T.E.: Robust online appearance models for visual tracking. PAMI 25(10), 1296–1311 (2003)CrossRefGoogle Scholar
  10. 10.
    Yang, M., Wu, Y.: Tracking non-stationary appearances and dynamic feature selection. In: CVPR (2005)Google Scholar
  11. 11.
    Han, B., Davis, L.: On-line density-based appearance modeling for object tracking. In: ICCV (2005)Google Scholar
  12. 12.
    Wang, F., Landau, D.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001)CrossRefGoogle Scholar
  13. 13.
    Philomin, V., Duraiswami, R., Davis, L.: Quasi-Random Sampling for Condensation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 134–149. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In: CVPR (2007)Google Scholar
  15. 15.
    Atchade, Y., Liu, J.: The wang-landau algorithm for monte carlo computation in general state spaces. Technical Report (2004)Google Scholar
  16. 16.
    Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 661–675. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Roberts, G., Rosenthal, J.: Examples of adaptive mcmc (preprint, 2006)Google Scholar
  18. 18.
    Berg, B.: Introduction to markov chain monte carlo simulations and their statistical analysis. Phys.Stat. Mech. (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Junseok Kwon
    • 1
  • Kyoung Mu Lee
    • 1
  1. 1.Department of EECS, ASRISeoul National UniversitySeoulKorea

Personalised recommendations