Nonrigid Image Registration Using Dynamic Higher-Order MRF Model

  • Dongjin Kwon
  • Kyong Joon Lee
  • Il Dong Yun
  • Sang Uk Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)


In this paper, we propose a nonrigid registration method using the Markov Random Field (MRF) model with a higher-order spatial prior. The registration is designed as finding a set of discrete displacement vectors on a deformable mesh, using the energy model defined by label sets relating to these vectors. This work provides two main ideas to improve the reliability and accuracy of the registration. First, we propose a new energy model which adopts a higher-order spatial prior for the smoothness cost. This model improves limitations of pairwise spatial priors which cannot fully incorporate the natural smoothness of deformations. Next we introduce a dynamic energy model to generate optimal displacements. This model works iteratively with optimal data cost while the spatial prior preserve the smoothness cost of previous iteration. For optimization, we convert the proposed model to pairwise MRF model to apply the tree-reweighted message passing (TRW). Concerning the complexity, we apply the decomposed scheme to reduce the label dimension of the proposed model and incorporate the linear constrained node (LCN) technique for efficient message passings. In experiments, we demonstrate the competitive performance of the proposed model compared with previous models, presenting both quantitative and qualitative analysis.


Energy Model Markov Random Field Factor Graph Normalize Cross Correlation Ordinary Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Rohr, K.: Image Registration Based on Thin-Plate Splines and Local Estimates of Anisotropic Landmark Localization Uncertainties. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Pilet, J., Lepetit, V., Fua, P.: Real-Time Non-Rigid Surface Detection. In: CVPR (2005)Google Scholar
  4. 4.
    Kwon, D., Yun, I.D., Lee, K.H., Lee, S.U.: Efficient Feature-Based Nonrigid Registration of Multiphase Liver CT Volumes. In: BMVC (2008)Google Scholar
  5. 5.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Trans. Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  6. 6.
    Glocker, B., Komodakis, N., Paragios, N., Tziritas, G., Navab, N.: Inter and Intra-modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 408–420. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Shekhovtsov, A., Kovtun, I., Hlavác, V.: Efficient MRF Deformation Model for Non-Rigid Image Matching. In: CVPR (2007)Google Scholar
  8. 8.
    Kolmogorov, V.: Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)CrossRefGoogle Scholar
  9. 9.
    Komodakis, N., Tziritas, G., Paragios, N.: Fast, Approximately Optimal Solutions for Single and Dynamic MRFs. In: CVPR (2007)Google Scholar
  10. 10.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM SIGGRAPH Computer Graphics 20(4), 151–160 (1986)CrossRefGoogle Scholar
  11. 11.
    Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP estimation via agreement on trees: message-passing and linear programming. IEEE Trans. on Information Theory 51(11), 3697–3717 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory 47(2), 498–519 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bookstein, F.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Machine Intell. 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kohli, P., Torr, P.H.: Efficiently Solving Dynamic Markov Random Fields using Graph Cuts. In: ICCV (2005)Google Scholar
  15. 15.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. on Information Theory 51(7), 2282–2312 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Potetz, B.: Efficient belief propagation for vision using linear constraint nodes. In: CVPR (2007)Google Scholar
  17. 17.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A Comparative Study of Energy Minimization Methods for Markov Random Fields. In: ECCV (2006)Google Scholar
  18. 18.
    Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans. on Information Theory 47(2), 736–744 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dongjin Kwon
    • 1
  • Kyong Joon Lee
    • 1
  • Il Dong Yun
    • 2
  • Sang Uk Lee
    • 1
  1. 1.School of EECSSeoul Nat’l Univ.SeoulKorea
  2. 2.School of EIEHankuk Univ. of F. S.YonginKorea

Personalised recommendations