Learning to Localize Objects with Structured Output Regression

  • Matthew B. Blaschko
  • Christoph H. Lampert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5302)

Abstract

Sliding window classifiers are among the most successful and widely applied techniques for object localization. However, training is typically done in a way that is not specific to the localization task. First a binary classifier is trained using a sample of positive and negative examples, and this classifier is subsequently applied to multiple regions within test images. We propose instead to treat object localization in a principled way by posing it as a problem of predicting structured data: we model the problem not as binary classification, but as the prediction of the bounding box of objects located in images. The use of a joint-kernel framework allows us to formulate the training procedure as a generalization of an SVM, which can be solved efficiently. We further improve computational efficiency by using a branch-and-bound strategy for localization during both training and testing. Experimental evaluation on the PASCAL VOC and TU Darmstadt datasets show that the structured training procedure improves performance over binary training as well as the best previously published scores.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosch, A., Zisserman, A., Muñoz, X.: Representing Shape with a Spatial Pyramid Kernel. In: CIVR (2007)Google Scholar
  2. 2.
    Chum, O., Zisserman, A.: An Exemplar Model for Learning Object Classes. In: CVPR (2007)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  4. 4.
    Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of Adjacent Contour Segments for Object Detection. PAMI 30, 36–51 (2008)CrossRefGoogle Scholar
  5. 5.
    Rowley, H.A., Baluja, S., Kanade, T.: Human Face Detection in Visual Scenes. In: NIPS, vol. 8, pp. 875–881 (1996)Google Scholar
  6. 6.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. CVPR 1, 511 (2001)Google Scholar
  7. 7.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond Sliding Windows: Object Localization by Efficient Subwindow Search. In: CVPR (2008)Google Scholar
  8. 8.
    Fergus, R., Zisserman, P.P.A.: Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition. IJCV 71, 273–303 (2007)CrossRefGoogle Scholar
  9. 9.
    Bouchard, G., Triggs, B.: Hierarchical part-based visual object categorization. In: CVPR, Washington, DC, USA, pp. 710–715. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Felzenszwalb, P., McAllester, D., Ramanan, D.: A Discriminatively Trained, Multiscale, Deformable Part Model. In: CVPR (2008)Google Scholar
  11. 11.
    Leibe, B., Leonardis, A., Schiele, B.: Combined Object Categorization and Segmentation with an Implicit Shape Model. In: Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic (2004)Google Scholar
  12. 12.
    Fritz, M., Leibe, B., Caputo, B., Schiele, B.: Integrating representative and discriminative models for object category detection. In: ICCV, pp. 1363–1370 (2005)Google Scholar
  13. 13.
    Viitaniemi, V., Laaksonen, J.: Techniques for Still Image Scene Classification and Object Detection. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 35–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML, p. 104 (2004)Google Scholar
  15. 15.
    Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. MIT Press, Cambridge (2007)Google Scholar
  16. 16.
    Everingham, M., et al.: The 2005 PASCAL Visual Object Classes Challenge. In: Selected Proceedings of the First PASCAL Challenges Workshop, pp. 117–176. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L.: The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results (2006), http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
  18. 18.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007), http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
  19. 19.
    Hemery, B., Laurent, H., Rosenberger, C.: Comparative study of metrics for evaluation of object localisation by bounding boxes. In: ICIG, pp. 459–464 (2007)Google Scholar
  20. 20.
    Eichhorn, J., Chapelle, O.: Object Categorization with SVM: Kernels for Local Features. Technical Report 137, Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2004)Google Scholar
  21. 21.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  22. 22.
    Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Bay, H., Tuytelaars, T., Van Gool, L.J.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Magee, D.R., Boyle, R.D.: Detecting Lameness Using ’Re-Sampling Condensation’ and ’Multi-Stream Cyclic Hidden Markov Models’. Image and Vision Computing 20, 581–594 (2002)CrossRefGoogle Scholar
  25. 25.
    Crandall, D.J., Huttenlocher, D.P.: Composite models of objects and scenes for category recognition. In: CVPR (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Matthew B. Blaschko
    • 1
  • Christoph H. Lampert
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations