Comparing Three Simulated Strategies for Cancer Monitoring with Nanorobots

  • Carlos Adolfo Piña-García
  • Ericka-Janet Rechy-Ramírez
  • V. Angélica García-Vega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5317)


The use of nanorobots in medical applications, specifically cancer treatment, is a serious alternative to prevent this disease. Locating chemical sources and tracking them over time, are tasks where nanorobotics is an ideal candidate to accomplish them. We present a multiagent simulation of three bio-inspired strategies to find targets in fluid environments; including diverse conditions for example: noisy sensors, interference between agents and obstacles generated by the environment itself. Besides, we present a comparative analysis among the three strategies. The results show that nanorobotics used in cancer therapy needs to explore an extensive range of blind searching techniques without communication.


Multiagent System Hardware Architecture Simulated Strategy Chemical Source Window Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L.C.: Nanorobot Hardware Architecture for Medical Defense. Sensors (2008) ISSN 1424-8220Google Scholar
  2. 2.
    Cavalcanti, A., Shirinzadeh, B., Hogg, T., Smith, J.A.: Hardware Architecture for Nanorobot Application in Cancer Therapy. In: IEEE-RAS ICAR Intl. Conf. on Advanced Robotics, Jeju, Korea, pp. 200–205 (August 2007)Google Scholar
  3. 3.
    Cavalcanti, A., Shirinzadeh, B., Fukuda, T., Ikeda, S.: Hardware Architecture for Nanorobot Application in Cerebral Aneurysm. In: IEEE - Nano 2007 Intl. Conf. on NanotechnologyGoogle Scholar
  4. 4.
    Cavalcanti, A., Shirinzadeh, B., Freitas Jr., R.A., Kretly, L.C.: Medical Nanorobot Architecture Based on Nanobioelectronics. Recent Patents on Nanotechnology 1, 1–10 (2007)CrossRefGoogle Scholar
  5. 5.
    Cavalcanti, A., Shirinzadeh, B., Murphy, D., Smith, J.A.: Nanorobots for Laparoscopic Cancer Surgery. In: IEEE ICIS 2007 International Conference on Computer and Information ScienceGoogle Scholar
  6. 6.
    Piña-García, Adolfo, C., Garcia-Vega, V.A.: A Hybrid Methodology for Robotic Architectures with a Cellular Approach. E-Learning in Industrial Electronics. In: 2006 1ST IEEE International Conference on (ICELIE), pp. 156–160 (December 2006)Google Scholar
  7. 7.
    Piña-García, C.A., Rechy-Ramírez, E.J., García-Vega, V.A.: Using an Alternative Model in a Complex Environment for Nanorobotics Navigation. In: 16th International Conference on Computing (CIC) (November 2007)Google Scholar
  8. 8.
    Cavalcanti, A., Hogg, T., Shirinzadeh, B., Liaw, H.C.: Nanorobot Communication Techniques: A Comprehensive Tutorial. In: IEEE ICARCV 2006 International Conference on Control, Automation, Robotics and Vision (2006)Google Scholar
  9. 9.
    Cavalcanti, A., Rosen, L., Shirinzadeh, B., Rosenfeld, M.: Nanorobot for Treatment of Patients with Artery Occlusion. In: Proceedings of Virtual Concept 2006, Cancun, Mexico (2006)Google Scholar
  10. 10.
    Cavalcanti, A.: Robots in Surgery. In: Euro Nano Forum 2005, Nanotechnology and the Health of the EU Citizen in 2020 (2005)Google Scholar
  11. 11.
    Cavalcanti, A., Freitas Jr., R.A.: Nanosystem Design with Dynamic Collision Detection for Autonomous Nanorobot Motion Control using Neural Networks. Computer Graphics and Geometry Journal 5(1), 50–74 (2003)Google Scholar
  12. 12.
    Hogg, T.: Coordinating Microscopic Robots in Viscous Fluids. HP Labs Palo Alto, CA. October 9 (2006)Google Scholar
  13. 13.
    Pecina-Slaus, N. (checar) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International 3, 17 (2003)CrossRefGoogle Scholar
  14. 14.
    Ummat, A., Sharma, G., Mavroidis, C., Dubey, A.: Bio-Nanorobotics: State of the Art and Future Challenges. Northeastern University (2005)Google Scholar
  15. 15.
    Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired Robots for Environmental Monitoring. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA (April 2004)Google Scholar
  16. 16.
    Drexler, E.K.: Engines of Creation. Anchor Press (1986)Google Scholar
  17. 17.
    Berg, H.C.: Random walks in biology. Princeton University Press, Princeton (1993)Google Scholar
  18. 18.
    Arkin, R.C.: Cooperation without communication: Multiagent schemes-based robot navigation. Journal of Robotic Systems 9(3), 351–364Google Scholar
  19. 19.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics: Antecedents and Directions. Autonomous Robots 4, 123 (1997)CrossRefGoogle Scholar
  20. 20.
    Defago, X.: Distributed computing on the move: From mobile computing to cooperative robotics and nanorobotics. In: Proc. 1st ACM Int’l Workshop on Principles of Mobile Computing (POMC 2001), Newport, RI, USA, pp. 49–55 (August 2001)Google Scholar
  21. 21.
    Dorigo, M.: Swarm-Bot: An Experiment in Swarm robotics. IEEE, Los Alamitos (2005)Google Scholar
  22. 22.
    Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behavior 2, 189218 (1994)Google Scholar
  23. 23.
    Millington, I.: Artificial Intelligence for games, 1st edn. Morgan Kaufmann, San Francisco (2006)Google Scholar
  24. 24.
    Miller, M.B., Bassler, B.L.: Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 16599 (2001)CrossRefGoogle Scholar
  25. 25.
    Murphy, R.R.: Introduction to AI robotics. The MIT Press, Cambridge (2000)Google Scholar
  26. 26.
    Palmer, G.: Physics for Game Programmers. Apress (2005) ISBN10: 1-59059-472-XGoogle Scholar
  27. 27.
    Siciliano, B., Khatib, O.: Handbook of robotics. Springer, Heidelberg (2008)CrossRefMATHGoogle Scholar
  28. 28.
    Listak, M., Martin, G., Pugal, D., Aabloo, A., Kruusmaa, M.: Design of a Semiautonomous Biomimetic Underwater Vehicle for Environmental Monitoring. In: 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2005), Espoo, Finland, 27.06.-30.06.2005, pp. 9–14. IEEE, New York (2005)Google Scholar
  29. 29.
    Novak, M., Wilensky, U.: NetLogo Bug Hunt Coevolution model. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL,
  30. 30.
    Ghose, K., Horiuchi, T.K., Krishnaprasad, P.S., Mos, C.F.: Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey. PLoS Biology 4(5), 108 (2006)CrossRefGoogle Scholar
  31. 31.
    Ghose, K., Horiuchi, T.K., Krishnaprasad, P.S., Moss, C.F.: The echolocating bats pursuit strategy is optimal for unpredictably maneuvering prey. NACS 79.1Google Scholar
  32. 32.
    Bénichou, O., Coppey, M., Moreau, M., Suet, P.-H., Voituriez, R.: Optimal Search Strategies for Hidden Targets. The American Physical Society (2005)Google Scholar
  33. 33.
    Wilensky, U.: Netlogo, center for connected learning and computer-based modeling (1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlos Adolfo Piña-García
    • 1
  • Ericka-Janet Rechy-Ramírez
    • 2
  • V. Angélica García-Vega
    • 1
  1. 1.Facultad de Física e Inteligencia Artificial, Departamento de Inteligencia ArtificialUniversidad VeracruzanaXalapa, Ver.México
  2. 2.Laboratorio Nacional de Informática Avanzada, LANIAVeracruzMéxico

Personalised recommendations