Semantic Annotation and Question Answering of Statistical Graphs

  • Michel Dumontier
  • Leo Ferres
  • Natalia Villanueva-Rosales
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5317)

Abstract

Although statistical graphs are ubiquitous, few techniques and standards exist to exchange, search and query these graphical representations. The gSem project aims to improve human-graph interaction by developing new approaches to manage statistical graph knowledge. Two specific objectives of this project are addressed in this paper: (1) improve the efficiency of searching statistical graph knowledge and (2) facilitate sophisticated question answering about statistical graph knowledge. In particular, semantic annotation and query answering across statistical graphs with OWL ontologies are described.

Keywords

Ontology question answering OWL statistical graphs semantic web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleveland, W.: The Elements of Graphing Data. Hobart Press, Summit (1994)Google Scholar
  2. 2.
    Lewandowsky, S., Spence, I.: The perception of statistical graphs. Sociological Methods and Research 18, 200–242 (1989)CrossRefGoogle Scholar
  3. 3.
    Ecma International: Office Open XML File Formats (2006), http://www.ecma-international.org/publications/standards/Ecma-376.htm
  4. 4.
    Organization for the Advancement of Structured Information Standards (OASIS): Open Document Format for Office Applications (OpenDocument) v1.0 (2005), http://www.oasis-open.org/committees/download.php/12572/
  5. 5.
    Ferres, L., Dumontier, M., Villanueva-Rosales, N.: Semantic query answering with time-series graphs. In: Proceedings of the Eleventh International IEEE EDOC Conference Workshop, Annapolis, MD, USA, pp. 117–124. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  6. 6.
    Ferres, L., Verkhogliad, P., Lindgaard, G., Boucher, L., Chrétien, A., Lachance, M.: Improving accessibility to statistical graphs: the igraph-lite system. In: Assets 2007: Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility, pp. 67–74. ACM Press, New York (2007)Google Scholar
  7. 7.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. In: Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) Description Logic Handbook. Cambridge University Press, Cambridge (2003)Google Scholar
  8. 8.
    Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11(1), 65–100 (1987)CrossRefGoogle Scholar
  9. 9.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Annals of Mathematics and Artificial Intelligence 30(1-4), 171–210 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Artale, A., Franconi, E.: Introducing temporal description logics. In: TIME 1999: Proceedings of the Sixth International Workshop on Temporal Representation and Reasoning, Washington, DC, USA, p. 2. IEEE Computer Society, Los Alamitos (1999)CrossRefGoogle Scholar
  11. 11.
    Ester, M., Frommelt, A., Kriegel, H.P., Sander, J.: Algorithms for characterization and trend detection in spatial databases. In: Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 44–50 (1998)Google Scholar
  12. 12.
    Haarslev, V.: Formal semantics of visual languages using spatial reasoning. In: VL 1995: Proceedings of the 11th International IEEE Symposium on Visual Languages, Washington, DC, USA, p. 156. IEEE Computer Society, Los Alamitos (1995)Google Scholar
  13. 13.
    Pinker, S.: A theory of graph comprehension. In: Freedle, R. (ed.) Artificial intelligence and the future of testing, pp. 73–126. L. Erlbaum, Hillsdale (1990)Google Scholar
  14. 14.
    Parsia, B., Patel-Schneider, P.F.: Owl 2 web ontology language: Primer. World Wide Web Consortium (W3C) Working Draft (2008)Google Scholar
  15. 15.
    Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.: The manchester owl syntax. In: Proceedings of the OWL: Experiences and Directions Workshop Series (2006)Google Scholar
  16. 16.
    Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 International Workshop on Description Logics (DL 2004), Whistler, British Columbia, Canada. CEUR Workshop Proceedings, vol. 104, CEUR-WS.org (2004)Google Scholar
  17. 17.
    Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with racer + nrql. In: Proceedings of the KI-2004 International Workshop on Applications of Description Logics (ADL 2004), Ulm, Germany, September 24 (2004)Google Scholar
  19. 19.
    Poole, D.: Semantic science: machine understandable scientific theories and data (2007), www.cs.ubc.ca/spider/poole/Semantic-Science/SemanticScience.pdf
  20. 20.
    Hendler, J.: Science and the semantic web. Science 299(5606), 520–521 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michel Dumontier
    • 1
    • 2
  • Leo Ferres
    • 3
  • Natalia Villanueva-Rosales
    • 2
  1. 1.Department of BiologyCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Computer ScienceUniversity of ConcepciónConcepciónChile

Personalised recommendations