Hybridization of PSO and a Discrete Position Update Scheme Techniques for Manufacturing Cell Design

  • Orlando Duran
  • Nibaldo Rodriguez
  • Luiz Airton Consalter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5317)

Abstract

This paper proposes an hybrid algorithm for Manufacturing Cell Formation. The two techniques that are combined to address this problem correspond to Particle Swarm Optimization (PSO) and a Data Mining Clustering application. The criterion used to group the machines in cells is based on the minimization of inter-cell movements. A maximum cell size is imposed and the number of cell is parameterizable. Some published exact results have been used as benchmarks to assess the proposed algorithm. The computational results show that the proposed algorithm is able to find the optimal solutions on almost all instances with low variability and stability.

Keywords

Manufacturing cells machine grouping particle swarm optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selim, H.M., Askin, R.G., Vakharia, A.J.: Cell formation in group technology: review, evaluation and directions for future research. International Journal of Computers and Industrial Engineering 34(1), 3–20 (1998)CrossRefGoogle Scholar
  2. 2.
    Lee, E.S., Pai, P.F.: Operations Research in the Design of Cell Formation in Cellular Manufacturing Systems. In: Misra, J.C. (ed.) Uncertainty and optimality: Probability, Statistics and Operations Research. World Scientific, Singapore (2002)Google Scholar
  3. 3.
    Burbidge, J.L.: Production Flow Analysis - For Planning Group. Technology, Oxford Science Publications, Oxford (1989)Google Scholar
  4. 4.
    Dimopoulos, C.: A Review of Evolutionary Multiobjective Optimization Applications in the Area of Production Research. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), Oregon, USA, June 2004, vol. 2, pp. 1487–1494. IEEE Press, Los Alamitos (2004)Google Scholar
  5. 5.
    Boctor, F.: A linear formulation of the machine-part cell formation problem. International Journal Production Research 29(2), 343–356 (1991)CrossRefGoogle Scholar
  6. 6.
    Chen, W.-H., Srivastava, B.: Simulated annealing procedures for forming machine cells in group technology. European Journal of Operational Research 75, 100–111 (1994)CrossRefMATHGoogle Scholar
  7. 7.
    Venugopal, V., Narendran, T.T.: A genetic algorithm approach to the machine component grouping problem with multiple objectives. Computers and Industrial Engineering 22(4), 469–480 (1992)CrossRefGoogle Scholar
  8. 8.
    Gupta, Y., Gupta, M., Kumar, A., Sundaram, C.: A genetic algorithm-based approach to cell composition and layout design problems. International Journal of Production Research 34(2), 447–482 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    Aljaber, N., Baek, W., Chen, C.-L.: A tabu search approach to the cell formation problem. Computers and Industrial Engineering 32(1), 169–185 (1997)Google Scholar
  10. 10.
    Lozano, S., Adenso, B., Salinas, I., Giménez, L.: A One-Step Tabu Search Algorithm for Manufacturing Cell Design. Journal of the Operational Research Society 50(5), 509–516 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Andres, C., Lozano, S.: A particle swarm optimization algorithm for part-machine grouping. Robot Cim-Int. Manuf. 22(5-6), 468–474 (2006)CrossRefGoogle Scholar
  12. 12.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceeding of the IEEE International Conference on Neural Networks, Perth, Australia, pp. 12–13. IEEE Service Center (1995)Google Scholar
  13. 13.
    Correa, E.S., Freitas, A., Johnson, C.G.: A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In: M.K., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2006, Seattle, WA, USA, July 2006, ACM Press, New York (2006)Google Scholar
  14. 14.
    Lee, S., Park, H., Jeon, M.: Binary Particle Swarm Optimization with Bit Change Mutation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 90(10), 2253–2256 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Orlando Duran
    • 1
  • Nibaldo Rodriguez
    • 1
  • Luiz Airton Consalter
    • 2
  1. 1.Pontificia Universidad Catolica de ValparaisoValparaisoChile
  2. 2.Universidade de Passo FundoPasso Fundo (RS)Brasil

Personalised recommendations