Heuristic Methods for Hypertree Decomposition

  • Artan Dermaku
  • Tobias Ganzow
  • Georg Gottlob
  • Ben McMahan
  • Nysret Musliu
  • Marko Samer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5317)

Abstract

The literature provides several structural decomposition methods for identifying tractable subclasses of the constraint satisfaction problem. Generalized hypertree decomposition is the most general of such decomposition methods. Although the relationship to other structural decomposition methods has been thoroughly investigated, only little research has been done on efficient algorithms for computing generalized hypertree decompositions. In this paper we propose new heuristic algorithms for the construction of generalized hypertree decompositions. We evaluate and compare our approaches experimentally on both industrial and academic benchmark instances. Our experiments show that our algorithms improve previous heuristic approaches for this problem significantly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoretical Computer Science 239(2), 211–229 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    DBAI Hypertree Project website, Vienna University of Technology, http://www.dbai.tuwien.ac.at/proj/hypertree/
  4. 4.
    Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, 2nd edn., vol. 1, pp. 276–285. Wiley and Sons, Chichester (1992)Google Scholar
  5. 5.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)MATHGoogle Scholar
  6. 6.
    Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38(3), 353–366 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proc. of the 19th Conference on Design Automation (DAC 1982), pp. 175–181. IEEE Press, Los Alamitos (1982)Google Scholar
  8. 8.
    Ganzow, T., Gottlob, G., Musliu, N., Samer, M.: A CSP hypergraph library. Technical Report, DBAI-TR-2005-50, Vienna University of Technology (2005)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Co., New York (1979)MATHGoogle Scholar
  10. 10.
    Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artificial Intelligence 124(2), 243–282 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries. Journal of the ACM 48(3), 431–498 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gottlob, G., Leone, N., Scarcello, F.: Hypertree decomposition and tractable queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and tractable variants. In: Proc. of the 26th ACM Symposium on Principles of Database Systems (PODS 2007), pp. 13–22. ACM Press, New York (2007)Google Scholar
  15. 15.
    Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposition. ACM Journal of Experimental Algorithmics (to appear)Google Scholar
  16. 16.
    Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66(1), 57–89 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gyssens, M., Paredaens, J.: A decomposition methodology for cyclic databases. In: Gallaire, H., Nicolas, J.-M., Minker, J. (eds.) Advances in Data Base Theory, vol. 2, pp. 85–122. Plemum Press, New York (1984)CrossRefGoogle Scholar
  18. 18.
    Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Applications in VLSI domain. IEEE Transactions on Very Large Scale Integration Systems 7(1), 69–79 (1999)CrossRefGoogle Scholar
  19. 19.
    Karypis, G., Kumar, V.: hMetis: A hypergraph partitioning package, version 1.5.3 (1998)Google Scholar
  20. 20.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing 48(1), 96–129 (1998)CrossRefMATHGoogle Scholar
  21. 21.
    Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning. In: Proc. of the 36th ACM/IEEE Conference on Design Automation (DAC 1999), pp. 343–348. ACM Press, New York (1999)Google Scholar
  22. 22.
    Korimort, T.: Heuristic Hypertree Decomposition. PhD thesis, Vienna University of Technology (2003)Google Scholar
  23. 23.
    McMahan, B.: Bucket eliminiation and hypertree decompositions. Implementation Report, Database and AI Group, Vienna University of Technology (2004)Google Scholar
  24. 24.
    Musliu, N., Schafhauser, W.: Genetic algorithms for generalized hypertree decompositions. European Journal of Industrial Engineering 1(3), 317–340 (2007)CrossRefGoogle Scholar
  25. 25.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Samer, M.: Hypertree-decomposition via branch-decomposition. In: Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1535–1536. Professional Book Center (2005)Google Scholar
  27. 27.
    Samer, M., Szeider, S.: Complexity and applications of edge-induced vertex-cuts. Technical Report, arXiv:cs.DM/0607109 (2006)Google Scholar
  28. 28.
    Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. of the 7th International Conference on Very Large Data Bases (VLDB 1981), pp. 81–94. IEEE Press, Los Alamitos (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Artan Dermaku
    • 1
  • Tobias Ganzow
    • 2
  • Georg Gottlob
    • 3
    • 1
  • Ben McMahan
    • 4
  • Nysret Musliu
    • 1
  • Marko Samer
    • 1
  1. 1.Institut für Informationssysteme (DBAI)TU WienAustria
  2. 2.Mathematische Grundlagen der InformatikRWTH AachenGermany
  3. 3.Computing LaboratoryUniversity of OxfordUK
  4. 4.Department of Computer ScienceRice UniversityUSA

Personalised recommendations