Nanoscience pp 1069-1096 | Cite as

Viral Vectors for in Vivo Gene Transfer

Chapter

Abstract

The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gros, F.: La thérapie génique, Rapport Académie des Sciences 36 (1995)Google Scholar
  2. 2.
    Andre, F., Mir, L.M.: DNA electrotransfer: Its principles and an updated review of its therapeutic applications, Gene Ther. 11 (Suppl. 1), S33–S42 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    Goins, F.W., et al.: Delivery using herpes simplex virus: An overview, Methods Mol. Biol. 246, 257–299 (2004)PubMedGoogle Scholar
  4. 4.
    Naldini, L., et al.: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272 (5259), 263–267 (1996)CrossRefPubMedADSGoogle Scholar
  5. 5.
    Zufferey, R., et al.: Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J. Virol. 73 (4), 2886–2892 (1999)PubMedGoogle Scholar
  6. 6.
    Barquinero, J., Perez-Melgosa, M.: Retroviral vectors: New applications for an old tool, Gene Ther. 11 (Suppl. 1), S3–S9 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    Delenda, C.: Lentiviral vectors: Optimization of packaging, transduction and gene expression, J. Gene Med. 6 Suppl. 1, S125–S138 (2004)CrossRefPubMedGoogle Scholar
  8. 8.
    Tenenbaum, L., et al.: Recombinant AAV-mediated gene delivery to the central nervous system, J. Gene Med. 6 (Suppl. 1), S212–S222 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Verma, I.M., Weitzman, M.D.: Annu. Rev. Biochem. 74, 711–738 (2005)CrossRefGoogle Scholar
  10. 10.
    Sastry, L., et al.: Titering lentiviral vectors: Comparison of DNA, RNA and marker expression methods, Gene Ther. 9 (17), 1155–1162 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    Escarpe, P., et al.: Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations, Mol. Ther. 8 (2), 332–341 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    Sastry, L., et al.: Certification assays for HIV-1-based vectors: Frequent passage of gag sequences without evidence of replication-competent viruses, Mol. Ther. 8 (5), 830–839 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    Stratford-Perricaudet, L.D., et al.: Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector, Hum. Gene Ther. 1 (3), 241–256 (1990)CrossRefPubMedGoogle Scholar
  14. 14.
    Le Gal La Salle, G., et al.: An adenovirus vector for gene transfer into neurons and glia in the brain, Science 259 (5097), 988–990 (1993)Google Scholar
  15. 15.
    Corti, O., et al.: Long-term doxycycline-controlled expression of human tyrosine hydroxylase after direct adenovirus-mediated gene transfer to a rat model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 96 (21), 12120–12125 (1999)CrossRefPubMedADSGoogle Scholar
  16. 16.
    Thévenot, E., et al.: Targeting conditional gene modification into the serotonin neurons of the dorsal raphe nucleus by viral delivery of the Cre recombinase, Mol. Cell Neurosci. 24 (1), 139–147 (2003)CrossRefPubMedGoogle Scholar
  17. 17.
    Volpers, C., Kochanek, S.: Adenoviral vectors for gene transfer and therapy, J. Gene Med. 6 Suppl. 1, S164–S171 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    Goyenvalle, A., et al.: Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping, Science 306 (5702), 1796–1799 (2004)CrossRefPubMedADSGoogle Scholar
  19. 19.
    Sirninger, J., et al.: Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector, Hum. Gene Ther. 15 (9), 832–841 (2004)PubMedGoogle Scholar
  20. 20.
    Nakai, H., Storm, T.A., Kay, M.A.: Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors, Nat. Biotechnol. 18 (5), 527–532 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    Deglon, N., Hantraye, P.: Viral vectors as tools to model and treat neurodegenerative disorders, J. Gene Med. 7 (5), 530–539 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    Miller, A.D., et al.: A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): Gene transfer into cells obtained from humans deficient in HPRT, Proc. Natl. Acad. Sci. USA 80 (15), 4709–4713 (1983)CrossRefPubMedADSGoogle Scholar
  23. 23.
    Muul, L.M., et al.: Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: Long-term results of the first clinical gene therapy trial, Blood 101 (7), 2563–2569 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Cavazzana-Calvo, M., et al.: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease, Science 288 (5466), 669–672 (2000)CrossRefPubMedADSGoogle Scholar
  25. 25.
    Hacein-Bey-Abina, S., et al.: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1, Science 302 (5644), 415–419 (2003)CrossRefPubMedADSGoogle Scholar
  26. 26.
    Aiuti, A., et al.: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning, Science 296 (5577), 2410–2413 (2002)CrossRefPubMedADSGoogle Scholar
  27. 27.
    Bushman, F.D.: Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons, Cell 115 (2), 135–138 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
  29. 29.
    www4.od.nih.gov/oba/rdna.htm Google Scholar
  30. 30.
    Pearson et al.: Nat. Biotechnol. 2, 3–4 (2004)Google Scholar
  31. 31.
    Tuszynski, M.H., et al.: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease, Nat. Med. 11 (6) 551–555 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    Kordower, J.H., et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease, Science 290 (5492), 767–773 (2000)CrossRefPubMedADSGoogle Scholar
  33. 33.
    Fire, A., et al.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391 (6669), 806–811 (1998)CrossRefPubMedADSGoogle Scholar
  34. 34.
    Elbashir, S.M., et al.: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature 411 (6836), 494–498 (2001)CrossRefPubMedADSGoogle Scholar
  35. 35.
    Brummelkamp, T.R., Bernards, R., Agami, R.: A system for stable expression of short interfering RNAs in mammalian cells, Science 296 (5567), 550–553 (2002)CrossRefPubMedADSGoogle Scholar
  36. 36.
    Abbas-Terki, T., et al.: Lentiviral-mediated RNA interference, Hum. Gene Ther. 13 (18), 2197–2201 (2002)CrossRefPubMedGoogle Scholar
  37. 37.
    Rubinson, D.A., et al.: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference, Nat. Genet. 33 (3), 401–406 (2003)CrossRefPubMedGoogle Scholar
  38. 38.
    de Almeida, L.P., et al.: Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length, J. Neurosci. 22 (9), 3473–3483 (2002)PubMedGoogle Scholar
  39. 39.
    Lois, C., et al.: Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science 295 (5556), 868–872 (2002)CrossRefPubMedADSGoogle Scholar
  40. 40.
    Regulier, E., et al.: Early and reversible neuropathology induced by tetracycline regulated lentiviral overexpression of mutant huntingtin in rat striatum, Hum. Mol. Genet. 12 (21), 2827–2836 (2003)CrossRefPubMedGoogle Scholar
  41. 41.
    Kirik, D., Bjorklund, A.: Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors, Trends Neurosci. 26 (7), 386–392 (2003)CrossRefPubMedGoogle Scholar
  42. 42.
    Lo Bianco, C., et al.: Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 99 (16), 10813–10818 (2002)Google Scholar
  43. 43.
    Kirik, D., et al.: Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: A new primate model of Parkinson’s disease, Proc. Natl. Acad. Sci. USA 100 (5), 2884–2889 (2003)CrossRefPubMedADSGoogle Scholar
  44. 44.
    Wall, R.J., et al.: Genetically enhanced cows resist intramammary Staphylococcus aureus infection, Nat. Biotechnol. 23 (4), 445–451 (2005)CrossRefPubMedGoogle Scholar
  45. 45.
    Denning, C., et al.: Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep, Nat. Biotechnol. 19 (6), 559–562 (2001)CrossRefPubMedGoogle Scholar
  46. 46.
    Fassler, R.: Lentiviral transgene vectors, EMBO Rep. 5 (1), 28–29 (2004)CrossRefPubMedGoogle Scholar
  47. 47.
    Pfeifer, A., et al.: Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos, Proc. Natl. Acad. Sci. USA 99 (4), 2140–2145 (2002)CrossRefPubMedADSGoogle Scholar
  48. 48.
    Hofmann, A., et al.: Efficient transgenesis in farm animals by lentiviral vectors, EMBO Rep. 4 (11), 1054–1060 (2003)CrossRefPubMedGoogle Scholar
  49. 49.
    Hofmann, A., et al.: Generation of transgenic cattle by lentiviral gene transfer into oocytes, Biol. Reprod. 71 (2), 405–409 (2004)CrossRefPubMedGoogle Scholar
  50. 50.
    McGrew, M.J., et al.: Efficient production of germline transgenic chickens using lentiviral vectors, EMBO Rep. 5 (7), 728–733 (2004)CrossRefPubMedGoogle Scholar
  51. 51.
    Wolfgang, M.J., et al.: Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos, Proc. Natl. Acad. Sci. USA 98 (19), 10728–10732 (2001)CrossRefPubMedADSGoogle Scholar
  52. 52.
    Yang, S.H., et al.: Towards a transgenic model of Huntington’s disease in a non-human primate, Nature 453, 921–924 (2008)CrossRefPubMedADSGoogle Scholar
  53. 53.
    Hamra, F.K., et al.: Production of transgenic rats by lentiviral transduction of male germ-line stem cells, Proc. Natl. Acad. Sci. USA 99 (23), 14931–14936 (2002)CrossRefPubMedADSGoogle Scholar
  54. 54.
    Gossen, M., Bujard, H.: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters, Proc. Natl. Acad. Sci. USA 89 (12), 5547–5551 (1992)CrossRefPubMedADSGoogle Scholar
  55. 55.
    Urlinger, S., et al.: Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity, Proc. Natl. Acad. Sci. USA 97 (14), 7963–7968 (2000)CrossRefPubMedADSGoogle Scholar
  56. 56.
    Vogel, R., et al.: A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain, Hum. Gene Ther. 15 (2), 157–165 (2004)CrossRefPubMedGoogle Scholar
  57. 57.
    Tavitian, B.: In vivo imaging with oligonucleotides for diagnosis and drug development, Gut 52 Suppl. 4, 40–47 (2003)Google Scholar
  58. 58.
    Shah, K., et al.: Molecular imaging of gene therapy for cancer, Gene Ther. 11 (15), 1175–1187 (2004)CrossRefPubMedGoogle Scholar
  59. 59.
    Genove, G., et al.: A new transgene reporter for in vivo magnetic resonance imaging, Nat. Med. 11 (4), 450–454 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire des Processus Stochastiques et SpectresCommissariat à l’Energie Atomique LISTGif-sur-YvetteFrance
  2. 2.MIRCen CEA Fontenay-aux-RosesFontenay-aux-Roses CedexFrance

Personalised recommendations