Advertisement

Path Line Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields

  • Kuangyu Shi
  • Holger Theisel
  • Helwig Hauser
  • Tino Weinkauf
  • Kresimir Matkovic
  • Hans-Christian Hege
  • Hans-Peter Seidel
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

We describe an approach to visually analyzing the dynamic behavior of 3D time-dependent flow fields by considering the behavior of the path lines. At selected positions in the 4D space-time domain, we compute a number of local and global properties of path lines describing relevant features of them. The resulting multivariate data set is analyzed by applying state-of-the-art information visualization approaches in the sense of a set of linked views (scatter plots, parallel coordinates, etc.) with interactive brushing and focus+context visualization. The selected path lines with certain properties are integrated and visualized as colored 3D curves. This approach allows an interactive exploration of intricate 4D flow structures. We apply our method to a number of flow data sets and describe how path line attributes are used for describing characteristic features of these flows.

Keywords

Stream Line Information Visualization Path Line Lagrangian Coherent Structure Straight Path Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, D., Peikert, R.: Vortex tracking in scale space. In: Proc. VisSym 02, 233–240 (2002)Google Scholar
  2. 2.
    Banks, D.C., Singer, B.A.: Vortex tubes in turbolent flows: Identification, representation, reconstruction. In: Proc. IEEE Visualization 1994, 132–139 (1994)Google Scholar
  3. 3.
    Banks, D.C., Singer, B.A.: A predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics., 1(2), 151–163 (1995)CrossRefGoogle Scholar
  4. 4.
    Doleisch, H., Gasser, M., Hauser, H.: Interactive feature specification for focus+context visualization of complex simulation data. In: Proc. VisSym 03, 239–248 (2003)Google Scholar
  5. 5.
    Doleisch, H., Muigg, P., Hauser, H.: Interactive visual analysis of hurricane isabel. VRVis Technical Report (2004)Google Scholar
  6. 6.
    Doleisch, H., Mayer, M., Gasser, M., Priesching, P., Hauser, H.: Interactive feature specification for simulation data on time-varying grids. In: SimVis 05, 291–304 (2005)Google Scholar
  7. 7.
    Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: Proc. IEEE Visualization 1991, 33–40 (1991)Google Scholar
  8. 8.
    Gruchalla, K., Marbach, J.: Immersive visualization of the hurricane isabel dataset. (2004)Google Scholar
  9. 9.
    Green, M.A., Rowley, C.W., Haller, G.: Detection of lagrangian coherent structures in 3D turbulence. Journal of Fluid Mechanics., 572, 111–120 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured 3D time-dependent datasets. In: Proc. IEEE Visualization 2004, 329–336 (2004)Google Scholar
  11. 11.
    Hunt, J.C.R.: Vorticity and vortex dynamics in complex turbulent flows. Trans. Can. Soc. Mec. Engrs., 11:21 (1987)Google Scholar
  12. 12.
    Johnson, C.: Top scientific visualization research problems. IEEE Comput. Graph. Appl., 24(4), 13–17 (2004)CrossRefGoogle Scholar
  13. 13.
    Löffelmann, H., Doleisch, H., Gröller, E.: Visualizing dynamical systems near critical points. In: Spring Conference on Computer Graphics and its Applications, 175–184 (1998)Google Scholar
  14. 14.
    Mahrous, K., Bennett, J., Scheuermann, G., Hamann, B., Joy, K.: Topolog-ical segmentation in three-dimensional vector fields. IEEE Transactions on Visualization and Computer Graphics., 10(2), 198–205 (2004)CrossRefGoogle Scholar
  15. 15.
    Matkovic, K., Jelovic, M., Juric, J., Konyha, Z., Gracanin, D.: Interactive visual analysis end exploration of injection systems simulations. In: IEEE Visualization 2005, 391–398 (2005)Google Scholar
  16. 16.
    Peikert, R., Roth, M.: The parallel vectors operator - a vector field visualization primitive. In: Proc. IEEE Visualization 1999, 263–270 (1999)Google Scholar
  17. 17.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualization: Feature extraction and tracking. Computer Graphics Forum., 22(4), 775–792 (2003)CrossRefGoogle Scholar
  18. 18.
    Sujudi, D., Haimes, R.: Identification of swirling flow in 3D vector fields. AIAA Paper. 95,1715 (1995)Google Scholar
  19. 19.
    Shadden, S., Lekien, F., Marsden, J.E.: Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Physica D., 212, 271–304 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Salzbrunn, T., Scheuermann, G.: Streamline predicates as flow topology generalization. In: Topo-In-Vis 2005 (2005)Google Scholar
  21. 21.
    Stalling, D., Westerhoff, M., Hege, H.C.: Amira: A highly interactive system for visual data analysis. The Visualization Handbook, 749–767 (2005)Google Scholar
  22. 22.
    Theisel, H., Seidel, H.P.: Feature flow fields. In: Proc. VisSym 03, 141–148 (2003)Google Scholar
  23. 23.
    Tricoche, X., Scheuermann, G., Hagen, H.: Topology-based visualization of time-dependent 2D vector fields. In: Proc. VisSym 01, 117–126 (2001)Google Scholar
  24. 24.
    Theisel, H., Sahner, J., Weinkauf, T., Hege, H.C., Seidel, H.P.: Extraction of parallel vector surfaces in 3d time-dependent fields and application to vortex core line tracking. In: Proc. IEEE Visualization 2005, 631–638 (2005)Google Scholar
  25. 25.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proc. IEEE Visualization 2003, 225–232 (2003)Google Scholar
  26. 26.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Stream line and path line oriented topology for 2D time-dependent vector fields. In: Proc. IEEE Visualization 2004, 321–328 (2004)Google Scholar
  27. 27.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics., 11(4), 383–394 (2005)CrossRefGoogle Scholar
  28. 28.
    Weiskopf, D., Erlebacher, G., Ertl, T.: A Texture-Based Framework for Spacetime-Coherent Visualization of Time-Dependent Vector Fields. In: Proc. IEEE Visualization 2003, 107–114 (2003)Google Scholar
  29. 29.
    Wiebel, A., Scheuermann, G.: Eyelet particle tracing - steady visualization of unsteady flow. In: Proc. IEEE Visualization 2005 (2005)Google Scholar
  30. 30.
    Weiskopf, D., Schramm, F., Erlebacher, G., Ertl, T.: Particle and Texture Based Spatiotemporal Visualization of Time-Dependent Vector Fields. In: Proc. IEEE Visualization 2005 (2005)Google Scholar
  31. 31.
    Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Boundary switch connectors for topological visualization of complex 3D vector fields. In: Proc. VisSym 04, 183–192 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kuangyu Shi
    • 1
  • Holger Theisel
    • 2
  • Helwig Hauser
    • 3
  • Tino Weinkauf
    • 4
  • Kresimir Matkovic
    • 3
  • Hans-Christian Hege
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.MPI InformatikSaarbrückenGermany
  2. 2.Bielefeld UniversityBielefeldGermany
  3. 3.VRVis ViennaViennaAustria
  4. 4.Zuse Institute BerlinBerlinGermany

Personalised recommendations