Advertisement

Bringing Topology-Based Flow Visualization to the Application Domain

  • Robert S. Laramee
  • Guoning Chen
  • Monika Jankun-Kelly
  • Eugene Zhang
  • David Thompson
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

The visualization community is currently witnessing strong advances in topology-based flow visualization research. Numerous algorithms have been pro posed since the introduction of this class of approaches in 1989. Yet despite the many advances in the field, topology-based flow visualization methods have, until now, failed to penetrate industry. Application domain experts are still, in general, not using topological analysis and visualization in daily practice. We present a range of state-of-the art topology-based flow visualization methods such as vortex core line extraction, singularity and separatrix extraction, and periodic orbit extraction techniques, and apply them to real-world data sets. Applications include the visual ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well as flow around a spinning missile. The novel application of periodic orbit extraction to the boundary surface of a cooling jacket is presented. Based on our experiences, we then describe what we believe needs to be done in order to bring topological flow visualization methods to industry-level software applications. We believe this discussion will inspire useful directions for future work.

Keywords

flow visualization feature-based flow visualization flow topology applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Banks and B. A. Singer. Vortex Tubes in Turbulent Flows: Identification, Representation, Reconstruction. In P roceedings IEEE Visualization '94 , pages 132–139, October 1994.Google Scholar
  2. 2.
    D. C. Banks and B. A. Singer. A Predictor-Corrector Technique for Visualizing Unsteady Flow. IEEE Transactions on Visualization and Computer Graphics, 1(2):151–163, June 1995.CrossRefGoogle Scholar
  3. 3.
    D. Bauer and R. Peikert. Vortex Tracking in Scale-Space. In Proceedings of the Symposium on Data Visualisation 2002, pages 233–240. Eurographics Association, 2002.Google Scholar
  4. 4.
    C. H. Berdahl and D. S. Thompson. Eduction of Swirling Structure Using the Velocity Gradient Tensor. American Institute of Aeronautics and Astronautics (AIAA) Journal, 31(1):97–103, January 1993.zbMATHGoogle Scholar
  5. 5.
    E. L. Blades and D. L. Marcum. Numerical Simulation of a Spinning Missile with Dithering Canards Using Unstructured Grids. Jo urn al of Spacecraft and Rockets, 41(2):248–256, 2004.CrossRefGoogle Scholar
  6. 6.
    G. Chen, R. S. Laramee, and E. Zhang. Advanced Visualization of Engine Sim ulation Data Using Texture Synthesis and Topological Analysis. In NAFEMS World Congress Conference Proceedings. NAFEMS–The International Asso ciation for the Engineering Analysis Community, May 22–25 2007. (full proceedings on CDROM).Google Scholar
  7. 7.
    G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang. Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition. IEEE Transactions on Visualization and Computer Graphics, 13(4):769–785, Jul/Aug 2007.CrossRefGoogle Scholar
  8. 8.
    W. de Leeuw and R. van Liere. Visualization of Global Flow Structures Using Multiple Levels of Topology. In Data Visualization '99 (VisSym '99), pages 45–52. May 1999.Google Scholar
  9. 9.
    W. de Leeuw and R. van Liere. Multi-level Topology for Flow Visualization. Computers and Graphics, 24(3):325–331, June 2000.CrossRefGoogle Scholar
  10. 10.
    W. C. de Leeuw and R. van Liere. Collapsing Flow Topology Using Area Metrics. In Proceedi ngs IEEE Visual i zatio n '99, pages 349–354, 1999.Google Scholar
  11. 11.
    C. Garth, R.S. Laramee, X. Tricoche, J. Schneider, and H. Hagen. Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data. In Topology-Based Methods in Visualization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualization, pages 121–135. Springer, 2007.Google Scholar
  12. 12.
    C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann. Sur face Techniques for Vortex Visualization. In Data Visualization, Proceedings of the 6th Joint IEEE TCVG-EUROGRAPHICS Symposium on Visualization (VisSym 2004), pages 155–164, May 2004.Google Scholar
  13. 13.
    R. Haimes and D. Kenwright. On the Velocity Gradient Tensor and Fluid Fea ture Extraction. Technical Report AIAA Paper 99–3288, American Institute of Aeronautics and Astronautics, 1999.Google Scholar
  14. 14.
    H. Hauser, P.T. Bremer, H Theisel, M. Trener, and X. Tricoche. Panel: What are the most demanding and critical problems, and what are the most promising research directions in Topology-Based Flow Visualization? In Topology — Based Methods in Visualization Workshop, 2005, September 2005. Held in Budmerice, Slovakia.Google Scholar
  15. 15.
    J. L. Helman and L. Hesselink. Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27–36, August 1989.Google Scholar
  16. 16.
    J. L. Helman and L. Hesselink. Surface Representations of Two- and Three-Dimensional Fluid Flow Topology. In Proceedings IEEE Visualization '90, pages 6–13, 1990.Google Scholar
  17. 17.
    J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11(3):36–46, May 1991.CrossRefGoogle Scholar
  18. 18.
    M. Jankun-Kelly, M. Jiang, D. Thompson, and R. Machiraju. Vortex Visual ization for Practical Engineering Applications. IEEE Transactions on Visual ization and Computer Graphics, 12(5):957–964, 2006.CrossRefGoogle Scholar
  19. 19.
    J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics, 285:69–94, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Jiang, R. Machiraju, and D. S. Thompson. Geometric Verification of Swirling Features in Flow Fields. In Proceedings of IEEE Visualization '02, pages 307–314, 2002.Google Scholar
  21. 21.
    C. R. Johnson. Top Scientific Visualization Research Problems. IEEE Computer Graphics and Applications, 24(4):13–17, July/August 2004.CrossRefGoogle Scholar
  22. 22.
    C. R. Johnson, R. Moorehead, T. Munzner, H Pfister, P. Rheingans, and T. S. Yoo. NIH/NSF Visualization Research Challenges (Final Draft, January 2006). Technical report, 2006.Google Scholar
  23. 23.
    D. Kenwright and R. Haimes. Vortex Identification-Applications in Aero dynamics. In Proceedi ngs I EEE Visual i zation '97, pages 413–416, November 1997.Google Scholar
  24. 24.
    D. N. Kenwright. Automatic Detection of Open and Closed Separation and Attachment Lines. In Proceedings IEEE Vi sualizati on ' 98, pages 151–158, 1998.Google Scholar
  25. 25.
    D. N. Kenwright and R. Haimes. Automatic Vortex Core Detection. IEEE Computer Graphics and Applications, 18(4):70–74, July/August 1998.CrossRefGoogle Scholar
  26. 26.
    D. N. Kenwright, C. Henze, and C. Levit. Features Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, 1999.CrossRefGoogle Scholar
  27. 27.
    R. S. Laramee. Effective Visualization of Heat Transfer. In The 12th Inter national Symposium on Flow Visualization (ISFV12), September 10–24 2006. (proceedings on CDROM).Google Scholar
  28. 28.
    R. S. Laramee and C. Garth. Stream Surfaces and Texture Advection: A Hybrid Metaphor for Visualization of CFD Simulation Results. In The 12th Inter national Symposium on Flow Visualization (ISFV12), September 10–24 2006. (proceedings on CDROM).Google Scholar
  29. 29.
    R. S. Laramee and H. Hauser. Interactive 3D Flow Visualization Using Textures and Geometric Primitives. In NAFEMS World Congress Conference Proceed ings, page 75. NAFEMS–The International Association for the Engineering Analysis Community, May 17–20 2005. (full proceedings on CDROM).Google Scholar
  30. 30.
    R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and IBFVS: Image Space Based Visualization of Flow on Surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(6):637–648, November 2004.CrossRefGoogle Scholar
  31. 31.
    R. S. Laramee and C. Ware. Visual Interference with a Transparent Head Mounted Display. In CHI 2001, Conference on Human Factors in Comput ing Systems, Extended Abstracts, pages 323–324. ACM SIGCHI, ACM Press, 31 March–5 April 2001.Google Scholar
  32. 32.
    R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques. In Proceedings IEEE Visualizati on 2004, pages 51–58, 2004.Google Scholar
  33. 33.
    R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology Based Flow Visualization: The State of the Art. In Topology-Based Methods in Visualization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualization, pages 1–19. Springer, 2007.Google Scholar
  34. 34.
    Y. Levy, D. Degani, and A. Seginer. Graphical Visualization of Vortical Flows by Means of Helicity. AIAA Journal, 28:1347–1352, 1990.CrossRefGoogle Scholar
  35. 35.
    S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology Preserving Com pression of 2D Vector Fields. In Proceedi ngs IEEE Visualization 2000, pages 343–350, 2000.Google Scholar
  36. 36.
    B. Lorensen. Panel Statement: On the Death of Visualization: Can It Survive Without Customers? In NIH/NSF Fall 2004 Workshop on Visu alization Research Challenges, September 2004. Available for download: http://visual.nlm.nih.gov/.
  37. 37.
    W. E. Lorensen and H. E. Cline. Marching Cubes: a High Resolution 3D Surface Construction Algorithm. In Computer Graphics (Proceedings of ACM SIGGRAPH 87, Anaheim, CA), pages 163–170. ACM, July 27–31 1987.Google Scholar
  38. 38.
    R. Machiraju, S. Parthasarathy, J. W. Wilkins, D. S. Thompson, B. Gatlin, D. A. Richie, T.-S. Choy, M. Jiang, S. Mehta, M. Coatney, S. A. Barr, and K. Hazzard. Mining Temporally-Varying Phenomena in Scientific Datasets. In Data Mining: Next Generation Challenges and Future Directions, pages 273– 290. AAAI/MIT Press, 2004.Google Scholar
  39. 39.
    R. Peikert and M. Roth. The Parallel Vectors Operator — A Vector Field Visu alization Primitive. In Proceedings of IEEEVi sualizati on ' 99, pages 263–270. IEEE Computer Society, 1999.Google Scholar
  40. 40.
    F. Reinders, I. A. Sadarjoen, B. Vrolijk, and F. H. Post. Vortex Tracking and Visualisation in a Flow Past a Tapered Cylinder. In Computer Graphics Forum, volume 21(4), pages 675–682. November 2002.Google Scholar
  41. 41.
    M. Roth and R. Peikert. A Higher-Order Method For Finding Vortex Core Lines. In Proceedings IEEE Visualization '98, pages 143–150, 1998.Google Scholar
  42. 42.
    I. A. Sadarjoen and F. H. Post. Detection, Quantification, and Tracking of Vortices using Streamline Geometry. Computers and Graphics, 24(3):333–341, June 2000.CrossRefGoogle Scholar
  43. 43.
    G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood. Visu alization of Higher Order Singularities in Vector Fields. In Proceedings IEEE Visualization '97, pages 67–74, October 1997.Google Scholar
  44. 44.
    G. Scheuermann, H. Krüger, M. Menzel, and A. P. Rockwood. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109–116, April/June 1998.CrossRefGoogle Scholar
  45. 45.
    K. Shi, H. Theisel, T. Weinkauf, H. Hauser, H.-C. Hege, and H.-P. Seidel. Path Line Oriented Topology for Periodic 2D Time-Dependent Vector Fields. In Data Visualization, The Joint Eurographics-IEEE VGTC Symposium on Visualization (EuroVis 2006), pages 139–146, 2006.Google Scholar
  46. 46.
    D. Sujudi and R. Haimes. Identification of Swirling Flow in 3D Vector Fields. Technical Report AIAA Paper 95–1715, American Institute of Aeronautics and Astronautics, 1995.Google Scholar
  47. 47.
    H. Theisel, T. Ertl, H.-C. Hagen, B. Noack, and G. Scheuermann. Panel: Why are topological methods not included in commercial visualization systems? In Topology-Based Methods in Visualization Workshop, 2005, September 2005. Held in Budmerice, Slovakia.Google Scholar
  48. 48.
    H. Theisel, T. Weinkauf, H.-P. Seidel, and H. Seidel. Grid-Independent Detec tion of Closed Stream Lines in 2D Vector Fields. In Proceedings of the Conference on Vision, Modeling and Visualization 2004 (VMV 04), pages 421–428, November 2004.Google Scholar
  49. 49.
    X. Tricoche, C. Garth, and G. Scheuermann. Fast and Robust Extraction of Separation Line Features. In Proceedings of Seminar on Scientific Visualization 2003, Schloss Dagstuhl, 2003.Google Scholar
  50. 50.
    X. Tricoche, G. Scheuermann, and H. Hagen. Topology-Based Visualization of Time-Dependent 2D Vector Fields. In Proceedings of the Joint Eurograph ics — IEEE TCVG Symposium on Visualization (VisSym '01), pages 117–126, May 28–30 2001.Google Scholar
  51. 51.
    J. J. van Wijk. The Value of Visualization. In Proceedings IEEE Visualization '05, pages 79–86. IEEE Computer Society, 2005.Google Scholar
  52. 52.
    T. Wischgoll and G. Scheuermann. Detection and Visualization of Closed Streamlines in Planar Fields. IEEE Transactions on Visualization and Com puter Graphics, 7(2):165–172, 2001.CrossRefGoogle Scholar
  53. 53.
    T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking Closed Streamlines in Time Dependent Planar Flows. In Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV 01), pages 447–454, November 21–23 2001.Google Scholar
  54. 54.
    E. Zhang, K. Mischaikow, and G. Turk. Vector field design on surfaces. ACM Transactions on Graphics, 25(4):1294–1326, 2006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robert S. Laramee
    • 1
  • Guoning Chen
    • 2
  • Monika Jankun-Kelly
    • 3
  • Eugene Zhang
    • 2
  • David Thompson
    • 3
  1. 1.Department of Computer ScienceSwansea UniversityWalesUK
  2. 2.Oregon State UniversityCorvallisOregon
  3. 3.Mississippi State UniversityStarkvilleMississippi

Personalised recommendations